Primary Citation of Related Structures:   1BMR
PubMed Abstract: 
NMR structures of a new toxin from the scorpion Leiurus quinquestriatus hebraeus (Lqh III) have been investigated in conjunction with its pharmacological properties. This toxin is proposed to belong to a new group of scorpion toxins, the alpha-like toxins that target voltage-gated sodium channels with specific properties compared with the classical alpha-scorpion toxins ...
NMR structures of a new toxin from the scorpion Leiurus quinquestriatus hebraeus (Lqh III) have been investigated in conjunction with its pharmacological properties. This toxin is proposed to belong to a new group of scorpion toxins, the alpha-like toxins that target voltage-gated sodium channels with specific properties compared with the classical alpha-scorpion toxins. Electrophysiological analysis showed that Lqh III inhibits a sodium current inactivation in the cockroach axon, but induces in addition a resting depolarization due to a slowly decaying tail current atypical to other alpha-toxin action. Binding studies indicated that radiolabeled Lqh III binds with a high degree of affinity (Ki=2.2 nM) on cockroach sodium channels and that the alpha-toxin from L quinquestriatus hebraeus highly active on insects (LqhalphaIT) and alpha-like toxins compete at low concentration for its receptor binding site, suggesting that the alpha-like toxin receptor site is partially overlapping with the receptor site 3. Conversely, in rat brain, Lqh III competes for binding of the most potent anti-mammal alpha-toxin from Androctonus australis Hector venom (AaH II) only at very high concentration. The NMR structures were used for the scrutiny of the similarities and differences with representative scorpion alpha-toxins targeting the voltage-gated sodium channels of either mammals or insects. Three turn regions involved in the functional binding site of the anti-insect LqhalphaIT toxin reveal significant differences in the Lqh III structure. The electrostatic charge distribution in the Lqh III toxin is also surprisingly different when compared with the anti-mammal alpha-toxin AaH II. Similarities in the electrostatic charge distribution are, however, recognized between alpha-toxins highly active on insects and the alpha-like toxin Lqh III. This affords additional important elements to the definition of the new alpha-like group of scorpion toxins and the mammal versus insect scorpion toxin selectivities.
Related Citations: 
New Toxins Acting on Sodium Channels from the Scorpion Leiurus Quinquestriatus Hebraeus Suggest a Clue to Mammalian Vs Insect Selectivity Sautiere, P., Cestele, S., Kopeyan, C., Martinage, A., Drobecq, H., Doljansky, Y., Gordon, D. (1998) Toxicon 36: 1141
Sodium Channels as Targets for Neurotoxins. Modes of Action and Interaction of Neurotoxins with Receptor Sites on Sodium Channels Gordon, D. (1997) Toxins And Signal Transduction (in: Cellular And Molecular Mechanisms Of Toxin Action, V 1) --: 119
Organizational Affiliation: 
Laboratoire de RMN Biomoléculaire Associé au CNRS, Université Claude Bernard - Lyon 1 et CPE-Lyon, Villeurbanne, France.