Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 A resolution.
Primary Citation of Related Structures:   1ALL
PubMed Abstract: 
The phycobiliprotein allophycocyanin from the cyanobacterium Spirulina platensis has been isolated and crystallized. The crystals belong to space group P6(3)22 with cell constants a = b = 101.9 A, c = 130.6 A, alpha = beta = 90 degrees, gamma = 120 degrees, with one (alpha beta) monomer in the asymmetric unit ...
The phycobiliprotein allophycocyanin from the cyanobacterium Spirulina platensis has been isolated and crystallized. The crystals belong to space group P6(3)22 with cell constants a = b = 101.9 A, c = 130.6 A, alpha = beta = 90 degrees, gamma = 120 degrees, with one (alpha beta) monomer in the asymmetric unit. The three-dimensional structure of the (alpha beta) monomer was solved by multiple isomorphous replacement. The crystal structure has been refined in a cyclic manner by energy-restrained crystallographic refinement and model building. The conventional crystallographic R-factor of the final model is 19.6% with data from 8.0 to 2.3 A. The molecular structure of the subunits resembles other solved phycobiliprotein structures. In comparison to C-phycocyanin and b-phycoerythrin the major differences arise from deletions and insertions of segments involved in the protein-chromophore interactions. The stereochemistry of the alpha 84 and beta 84 chiral atoms are C(2)-R, C(3)-R and C(31)-R. The configuration (C(4)-Z, C(10)-Z and C(15)-Z) and the conformation (C(5)-anti, C(9)-syn and C(14)-anti) are equal for both chromophores.
Organizational Affiliation: 
Max-Planck-Institut für Biochemie, Martinsried, Germany.