7V6D

Structure of lipase B from Lasiodiplodia theobromae


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.192 
  • R-Value Observed: 0.195 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

A Novel Lipase from Lasiodiplodia theobromae Efficiently Hydrolyses C8-C10 Methyl Esters for the Preparation of Medium-Chain Triglycerides' Precursors.

Ng, A.M.J.Yang, R.Zhang, H.Xue, B.Yew, W.S.Nguyen, G.K.T.

(2021) Int J Mol Sci 22

  • DOI: https://doi.org/10.3390/ijms221910339
  • Primary Citation of Related Structures:  
    7V6D

  • PubMed Abstract: 

    Medium-chain triglycerides (MCTs) are an emerging choice to treat neurodegenerative disorders such as Alzheimer's disease. They are triesters of glycerol and three medium-chain fatty acids, such as capric (C8) and caprylic (C10) acids. The availability of C8-C10 methyl esters (C8-C10 ME) from vegetable oil processes has presented an opportunity to use methyl esters as raw materials for the synthesis of MCTs. However, there are few reports on enzymes that can efficiently hydrolyse C8-C10 ME to industrial specifications. Here, we report the discovery and identification of a novel lipase from Lasiodiplodia theobromae fungus (LTL1), which hydrolyses C8-C10 ME efficiently. LTL1 can perform hydrolysis over pH ranges from 3.0 to 9.0 and maintain thermotolerance up to 70 °C. It has high selectivity for monoesters over triesters and displays higher activity over commercially available lipases for C8-C10 ME to achieve 96.17% hydrolysis within 31 h. Structural analysis by protein X-ray crystallography revealed LTL1's well-conserved lipase core domain, together with a partially resolved N-terminal subdomain and an inserted loop, which may suggest its hydrolytic preference for monoesters. In conclusion, our results suggest that LTL1 provides a tractable route towards to production of C8-C10 fatty acids from methyl esters for the synthesis of MCTs.


  • Organizational Affiliation

    WIL@NUS Corporate Laboratory, Wilmar International Limited, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Lipase B
A, B
431Lasiodiplodia theobromaeMutation(s): 0 
Gene Names: LIPBDBV05_g2145
UniProt
Find proteins for A0A5N5DNA6 (Lasiodiplodia theobromae)
Explore A0A5N5DNA6 
Go to UniProtKB:  A0A5N5DNA6
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupA0A5N5DNA6
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
C
2N-Glycosylation
Glycosylation Resources
GlyTouCan:  G42666HT
GlyCosmos:  G42666HT
GlyGen:  G42666HT
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.192 
  • R-Value Observed: 0.195 
  • Space Group: I 2 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 65.428α = 90
b = 162.639β = 90
c = 166.674γ = 90
Software Package:
Software NamePurpose
Aimlessdata scaling
PHASERphasing
PHENIXrefinement
PDB_EXTRACTdata extraction
XDSdata reduction

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Research Foundation (NRF, Singapore)Singapore--

Revision History  (Full details and data files)

  • Version 1.0: 2021-10-13
    Type: Initial release
  • Version 1.1: 2022-02-16
    Changes: Database references
  • Version 1.2: 2023-11-29
    Changes: Data collection, Refinement description