Structural basis for the dual roles of DPW in lipid and UDP-sugar metabolism during rice anther development.
Qu, S., Wang, J., Li, G., Miao, C., Yan, L., Wang, W.(2025) Plant Physiol Biochem 222: 109762-109762
- PubMed: 40068458 
- DOI: https://doi.org/10.1016/j.plaphy.2025.109762
- Primary Citation of Related Structures:  
7EOZ - PubMed Abstract: 
Fatty acids and uridine diphosphate (UDP)-sugars are essential metabolites involved in the biosynthesis of polysaccharides and lipids, both of which are critical for anther development in plants. Our previous study identified Defective Pollen Wall (DPW), a rice fatty acyl carrier protein reductase (FAR), as a key factor in pollen wall formation. In this study, we demonstrate that the structure of DPW in complex with its cofactor NADP + exhibits structural similarities to that of UDP-glucose epimerase (UGE). In vitro enzymatic assays utilizing recombinant DPW confirmed its ability to interconvert UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) in an NADP(H)-dependent manner. Mutations in conserved NADP(H)-binding residues abolished both DPW's FAR and UGE activities. In vivo assays showed that the dpw mutation causes UDP-Glc accumulation, disrupting the balance between UDP-Glc and UDP-Gal in rice anthers. Taken together, our findings provide insights into the dual roles of DPW in lipid and UDP-sugar metabolism during rice anther development, shedding light on how plants integrate metabolic pathways through multifunctional enzymes to regulate male reproductive development.
- State Key Laboratory of Crop Stress Adaptation and Improvement, The Zhongzhou Laboratory for Integrative Biology, School of Life Sciences, Henan University, Jinming Avenue 1, Kaifeng, 475004, China.
Organizational Affiliation: 
















