4KEI

Crystal structure of mouse Ryanodine Receptor 2 (1-217) disease mutant P164S


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.41 Å
  • R-Value Free: 0.273 
  • R-Value Work: 0.242 
  • R-Value Observed: 0.244 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Type 2 Ryanodine Receptor Domain A Contains a Unique and Dynamic alpha-Helix That Transitions to a beta-Strand in a Mutant Linked with a Heritable Cardiomyopathy.

Amador, F.J.Kimlicka, L.Stathopulos, P.B.Gasmi-Seabrook, G.M.Maclennan, D.H.Van Petegem, F.Ikura, M.

(2013) J Mol Biol 425: 4034-4046

  • DOI: https://doi.org/10.1016/j.jmb.2013.08.015
  • Primary Citation of Related Structures:  
    2MC2, 4KEI, 4KEJ, 4KEK

  • PubMed Abstract: 

    Ryanodine receptors (RyRs) are large tetrameric calcium (Ca(2+)) release channels found on the sarcoplasmic reticulum that respond to dihydropyridine receptor activity through a direct conformational interaction and/or indirect Ca(2+) sensitivity, propagating sarcoplasmic reticulum luminal Ca(2+) release in the process of excitation-contraction coupling. There are three human RyR subtypes, and several debilitating diseases are linked to heritable mutations in RyR1 and RyR2 including malignant hypothermia, central core disease, catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Despite the recent appreciation that many disease-associated mutations within the N-terminal RyRABC domains (i.e., residues 1-559) are located in the putative interfaces mediating tetrameric channel assembly, the precise structural and dynamical consequences of the mutations are not well understood. We used solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography to examine the effect of ARVD2-associated (i.e., R176Q) and CPVT-associated [i.e., P164S, R169Q and delta exon 3 (Δ3)] mutations on the structure and dynamics of RyR2A. Our solution NMR data exposed a mobile α-helix, unique to type 2; further, this α2 helix rescues the β-strand lost in RyR2A Δ3 but remains dynamic in the hot-spot loop (HS-loop) P164S, R169Q and R176Q mutant proteins. Docking of our X-ray crystal/NMR hybrid structure into the RyR1 cryo-electron microscopy map revealed that this RyR2A α2 helix is in close proximity to dense "columns" projecting toward the channel pore. This is in contrast to the HS-loop mutations that cause structural changes largely localized to the intersubunit interface between adjacent ABC domains. Taken together, our data suggest that ARVD2 and CPVT mutations have at least two distinct structural consequences linked to channel dysfunction: perturbation of the HS-loop (i.e., domain A):domain B intersubunit interface and disruption of the communication between the N-terminal region and the channel domain.


  • Organizational Affiliation

    Campbell Family Institute for Cancer Research, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Ryanodine receptor 2217Mus musculusMutation(s): 1 
Gene Names: Ryr2
UniProt & NIH Common Fund Data Resources
Find proteins for E9Q401 (Mus musculus)
Explore E9Q401 
Go to UniProtKB:  E9Q401
IMPC:  MGI:99685
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupE9Q401
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.41 Å
  • R-Value Free: 0.273 
  • R-Value Work: 0.242 
  • R-Value Observed: 0.244 
  • Space Group: I 41
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 111.745α = 90
b = 111.745β = 90
c = 37.821γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
PHASERphasing
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-09-04
    Type: Initial release
  • Version 1.1: 2013-09-11
    Changes: Database references
  • Version 1.2: 2013-10-23
    Changes: Database references
  • Version 1.3: 2023-09-20
    Changes: Data collection, Database references, Refinement description