2JUL

NMR Structure of DREAM


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 15 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

NMR structure of DREAM: Implications for Ca(2+)-dependent DNA binding and protein dimerization.

Lusin, J.D.Vanarotti, M.Li, C.Valiveti, A.Ames, J.B.

(2008) Biochemistry 47: 2252-2264

  • DOI: https://doi.org/10.1021/bi7017267
  • Primary Citation of Related Structures:  
    2JUL

  • PubMed Abstract: 

    DREAM (calsenilin/KChIP3) is an EF-hand calcium-binding protein that binds to specific DNA sequences and regulates Ca2+-induced transcription of prodynorphin and c-fos genes. Here, we present the atomic-resolution structure of Ca2+-bound DREAM in solution determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments and 15N NMR relaxation analysis indicate that Ca2+-bound DREAM forms a stable dimer in solution. The structure of the first 77 residues from the N-terminus could not be determined by our NMR analysis. The C-terminal DREAM structure (residues 78-256) contains four EF-hand motifs arranged in a tandem linear array, similar to that seen in KChIP1, recoverin, and other structures of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily. Mg2+ is bound at the second EF-hand, whereas Ca2+ is bound functionally at the third and fourth sites. The first and second EF-hands form an exposed hydrophobic groove on the protein surface lined by side-chain atoms of L96, F100, F114, I117, Y118, F121, F122, Y151, L155, L158, and L159 that are highly conserved in all NCS proteins. An exposed leucine near the C-terminus (L251) is suggested to form intermolecular contacts with leucine residues in the hydrophobic groove (L155, L158, and L159). Positively charged side chains of Arg and Lys (Lys87, Lys90, Lys91, Arg98, Lys101, Arg160, and Lys166) are clustered on one side of the protein surface and may mediate electrostatic contacts with DNA targets. We propose that Ca2+-induced dimerization of DREAM may partially block the putative DNA-binding site, which may suggest as to how Ca2+ abolishes DREAM binding to DNA to activate the transcription of prodynorphin and other downstream genes in pain control.


  • Organizational Affiliation

    Department of Chemistry, University of California, Davis, California 95616, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Calsenilin256Mus musculusMutation(s): 0 
Gene Names: Kcnip3CsenDreamKchip3
UniProt & NIH Common Fund Data Resources
Find proteins for Q9QXT8 (Mus musculus)
Explore Q9QXT8 
Go to UniProtKB:  Q9QXT8
IMPC:  MGI:1929258
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9QXT8
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download Ideal Coordinates CCD File 
B [auth A],
C [auth A]
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 15 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Released Date: 2008-04-22 
  • Deposition Author(s): Ames, J.

Revision History  (Full details and data files)

  • Version 1.0: 2008-04-22
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2022-03-16
    Changes: Database references, Derived calculations