6TP8

Substrate protein interactions in the limbus region of the catalytic site of Candida antarctica Lipase B


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.55 Å
  • R-Value Free: 0.192 
  • R-Value Work: 0.163 
  • R-Value Observed: 0.164 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 2.1 of the entry. See complete history


Literature

Principles of lipid-enzyme interactions in the limbus region of the catalytic site of Candida antarctica Lipase B.

Silvestrini, L.Cianci, M.

(2020) Int J Biol Macromol 158: 358-363

  • DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.061
  • Primary Citation of Related Structures:  
    6TP8

  • PubMed Abstract: 

    Lipases (E.C. 3.1.1.3) are ubiquitous hydrolases for the carboxyl ester bond of water-insoluble substrates such as triacylglycerols and phospholipids. Candida antarctica Lipase B (CALB) acts in aqueous as well as in low-water media, thus being of considerable biochemical significance with high interest also for its industrial applications. The hydrolysis reaction follows a two-step mechanism, or 'interfacial activation', with adsorption of the enzyme to a heterogeneous interface and subsequent enhancement of the lipolytic activity. Once positioned within the catalytic triad, substrates are then hydrolysed, and products released. However, the intermediate steps of substrate transfer from the lipidic-aqueous phase to the enzyme surface and then down to the catalytic site are still unclear. By inhibiting CALB with ethyl phosphonate and incubating with glyceryl tributyrate (2,3-di(butanoyloxy)propyl butanoate), the crystal structure of the lipid-enzyme complex, at 1.55 Å resolution, shows the tributyrin in the limbus region of active site. The substrate is found 10 Å above the catalytic Ser, with the glycerol backbone pre-aligned for further processing by key interactions via an extended water network with α-helix10 and α-helix5. The findings offer new elements to elucidate the mechanism of substrate recognition, transfer and catalysis of Candida antarctica Lipase B (CALB) and lipases in general.


  • Organizational Affiliation

    Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Lipase B
A, B, C
317Moesziomyces antarcticusMutation(s): 0 
EC: 3.1.1.3
UniProt
Find proteins for P41365 (Pseudozyma antarctica)
Explore P41365 
Go to UniProtKB:  P41365
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP41365
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
D, E, F
2N-Glycosylation
Glycosylation Resources
GlyTouCan:  G42666HT
GlyCosmos:  G42666HT
GlyGen:  G42666HT
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.55 Å
  • R-Value Free: 0.192 
  • R-Value Work: 0.163 
  • R-Value Observed: 0.164 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 89.426α = 90
b = 156.654β = 90
c = 138.084γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
Aimlessdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2020-05-20
    Type: Initial release
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Advisory, Atomic model, Data collection, Derived calculations, Structure summary
  • Version 2.1: 2024-01-24
    Changes: Data collection, Database references, Refinement description, Structure summary