5KKR

KSR2:MEK1 Complex Bound to the Small Molecule APS-2-79


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.51 Å
  • R-Value Free: 0.287 
  • R-Value Work: 0.250 
  • R-Value Observed: 0.252 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling.

Dhawan, N.S.Scopton, A.P.Dar, A.C.

(2016) Nature 537: 112-116

  • DOI: https://doi.org/10.1038/nature19327
  • Primary Citation of Related Structures:  
    5KKR

  • PubMed Abstract: 

    Deregulation of the Ras-mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes. Kinase suppressor of Ras (KSR) is a MAPK scaffold that is subject to allosteric regulation through dimerization with RAF. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras-MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers.


  • Organizational Affiliation

    Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Kinase suppressor of Ras 2A [auth B]319Homo sapiensMutation(s): 0 
Gene Names: KSR2
EC: 2.7.11.1
UniProt & NIH Common Fund Data Resources
Find proteins for Q6VAB6 (Homo sapiens)
Explore Q6VAB6 
Go to UniProtKB:  Q6VAB6
PHAROS:  Q6VAB6
GTEx:  ENSG00000171435 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ6VAB6
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Dual specificity mitogen-activated protein kinase kinase 1B [auth C]395Oryctolagus cuniculusMutation(s): 0 
Gene Names: MAP2K1MEK1PRKMK1
EC: 2.7.12.2
UniProt
Find proteins for P29678 (Oryctolagus cuniculus)
Explore P29678 
Go to UniProtKB:  P29678
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP29678
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
6U7
Query on 6U7

Download Ideal Coordinates CCD File 
C [auth B]6,7-dimethoxy-~{N}-(2-methyl-4-phenoxy-phenyl)quinazolin-4-amine
C23 H21 N3 O3
PEKZLFZZBGBOPJ-UHFFFAOYSA-N
Binding Affinity Annotations 
IDSourceBinding Affinity
6U7 BindingDB:  5KKR IC50: 120 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.51 Å
  • R-Value Free: 0.287 
  • R-Value Work: 0.250 
  • R-Value Observed: 0.252 
  • Space Group: P 61 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 139.68α = 90
b = 139.68β = 90
c = 221.73γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XDSdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Cancer Institute (NIH/NCI)United StatesDP2 CA 186570-01

Revision History  (Full details and data files)

  • Version 1.0: 2016-08-31
    Type: Initial release
  • Version 1.1: 2016-09-14
    Changes: Database references
  • Version 1.2: 2017-09-20
    Changes: Author supporting evidence, Database references, Derived calculations
  • Version 1.3: 2019-12-04
    Changes: Author supporting evidence
  • Version 1.4: 2023-09-27
    Changes: Data collection, Database references, Refinement description