1IGS

INDOLE-3-GLYCEROLPHOSPHATE SYNTHASE FROM SULFOLOBUS SOLFATARICUS AT 2.0 A RESOLUTION


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Work: 0.177 
  • R-Value Observed: 0.177 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

2.0 A structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability.

Hennig, M.Darimont, B.Sterner, R.Kirschner, K.Jansonius, J.N.

(1995) Structure 3: 1295-1306

  • DOI: https://doi.org/10.1016/s0969-2126(01)00267-2
  • Primary Citation of Related Structures:  
    1IGS

  • PubMed Abstract: 

    Recent efforts to understand the basis of protein stability have focused attention on comparative studies of proteins from hyperthermophilic and mesophilic organisms. Most work to date has been on either oligomeric enzymes or monomers comprising more than one domain. Such studies are hampered by the need to distinguish between stabilizing interactions acting between subunits or domains from those acting within domains. In order to simplify the search for determinants of protein stability we have chosen to study the monomeric enzyme indole-3-glycerol phosphate synthase from the hyperthermophilic archaeon Sulfolobus solfataricus (sIGPS), which grows optimally at 90 degrees C. The 2.0 A crystal structure of sIGPS was determined and compared with the known 2.0 A structure of the IGPS domain of the bifunctional enzyme from the mesophilic bacterium Escherichia coli (eIGPS). sIGPS and eIGPS have only 30% sequence identity, but share high structural similarity. Both are single-domain (beta/alpha)8 barrel proteins, with one (eIGPS) or two (sIGPS) additional helices inserted before the first beta strand. The thermostable sIGPS has many more salt bridges than eIGPS. Several salt bridges crosslink adjacent alpha helices or participate in triple or quadruple salt-bridge clusters. The number of helix capping, dipole stabilizing and hydrophobic interactions is also increased in sIGPS. The higher stability of sIGPS compared with eIGPS seems to be the result of several improved interactions. These include a larger number of salt bridges, stabilization of alpha helices and strengthening of both polypeptide chain termini and solvent-exposed loops.


  • Organizational Affiliation

    Department of Structural Biology, University of Basel, Switzerland.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
INDOLE-3-GLYCEROLPHOSPHATE SYNTHASE248Saccharolobus solfataricusMutation(s): 0 
Gene Names: TRPC
UniProt
Find proteins for Q06121 (Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2))
Explore Q06121 
Go to UniProtKB:  Q06121
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ06121
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
PO4
Query on PO4

Download Ideal Coordinates CCD File 
B [auth A]PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Work: 0.177 
  • R-Value Observed: 0.177 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 58α = 90
b = 73.8β = 90
c = 104.3γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
MOSFLMdata reduction
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1996-07-11
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-07
    Changes: Data collection, Database references, Derived calculations, Other