1EAL

NMR STUDY OF ILEAL LIPID BINDING PROTEIN


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 
  • Conformers Submitted: 
  • Selection Criteria: LOWEST VIOLATION OF EXPERIMENTAL DISTANCE CONSTRAINTS 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Flexibility is a likely determinant of binding specificity in the case of ileal lipid binding protein.

Lucke, C.Zhang, F.Ruterjans, H.Hamilton, J.A.Sacchettini, J.C.

(1996) Structure 4: 785-800

  • DOI: https://doi.org/10.1016/s0969-2126(96)00086-x
  • Primary Citation of Related Structures:  
    1EAL

  • PubMed Abstract: 

    The family of lipid binding proteins (LBPs) includes a large number of fatty acid binding proteins (FABPs) but only two proteins (ileal lipid binding protein, ILBP, and liver fatty acid binding protein) that can bind both fatty acids and bile acids. Bile acid transport is medically and pharmacologically important, but is poorly understood. To understand the binding properties of ILBP, we studied its solution structure with and without bound lipids and compared these with known structures of FABPs. The sequence-specific 1H resonance assignments for porcine ILBP have been determined by homonuclear two-dimensional (2D) NMR spectroscopy for the apo-protein as well as for ILBP complexes with fatty acid and bile acid ligands. From NOE spectra and hydrogen exchange data, similar secondary structure elements were identified for all three protein forms. ILBP is composed of ten antiparallel beta strands arranged in two nearly orthogonal beta sheets (a fold seen in other FABPs, and dubbed the "beta-clam shell'), covered on one side by two short, nearly parallel alpha helices. Binding of fatty acids or bile acids to ILBP alters mainly the side-chain proton resonances of amino acids within the protein cavity, indicating that both bile acids and fatty acids can bind in the interior of the protein between the two beta sheets; binding of bile acids stabilizes the protein backbone by a small amount. Fast hydrogen exchange rates for the backbone amide protons of ILBP indicate that the hydrogen-bonding network of the beta sheet in ILBP is weaker than the corresponding network in rat intestinal and bovine heart FABPs. The tertiary structure of ILBP is similar to that of other LBPs, but appears to be unusually flexible, with a relatively weak hydrogen-bonding network. It is likely that this flexibility is important in allowing bile acids, which are larger and more rigid than fatty acids, to enter the central cavity of the protein.


  • Organizational Affiliation

    Albert Einstein College of Medicine, Bronx, NY 10461, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ILEAL LIPID BINDING PROTEIN127Sus scrofaMutation(s): 0 
UniProt
Find proteins for P10289 (Sus scrofa)
Explore P10289 
Go to UniProtKB:  P10289
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP10289
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 
  • Conformers Submitted: 
  • Selection Criteria: LOWEST VIOLATION OF EXPERIMENTAL DISTANCE CONSTRAINTS 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1997-01-22
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-16
    Changes: Database references, Derived calculations, Other