1ZYM

AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.306 
  • R-Value Work: 0.205 
  • R-Value Observed: 0.205 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

The first step in sugar transport: crystal structure of the amino terminal domain of enzyme I of the E. coli PEP: sugar phosphotransferase system and a model of the phosphotransfer complex with HPr.

Liao, D.I.Silverton, E.Seok, Y.J.Lee, B.R.Peterkofsky, A.Davies, D.R.

(1996) Structure 4: 861-872

  • DOI: https://doi.org/10.1016/s0969-2126(96)00092-5
  • Primary Citation of Related Structures:  
    1ZYM

  • PubMed Abstract: 

    The bacterial phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS) transports exogenous hexose sugars through the membrane and tightly couples transport with phosphoryl transfer from PEP to the sugar via several phosphoprotein intermediates. The phosphate group is first transferred to enzyme I, second to the histidine-containing phosphocarrier protein HPr, and then to one of a number of sugar-specific enzymes II. The structures of several HPrs and enzymes IIA are known. Here we report the structure of the N-terminal half of enzyme I from Escherichia coli (EIN). The crystal structure of EIN (MW approximately 30 kDa) has been determined and refined at 2.5 A resolution. It has two distinct structural subdomains; one contains four alpha helices arranged as two hairpins in a claw-like conformation. The other consists of a beta sandwich containing a three-stranded antiparallel beta sheet and a four-stranded parallel beta sheet, together with three short alpha helices. Plausible models of complexes between EIN and HPr can be made without assuming major structural changes in either protein. The alpha/beta subdomain of EIN is topologically similar to the phosphohistidine domain of the enzyme pyruvate phosphate dikinase, which is phosphorylated by PEP on a histidyl residue but does not interact with HPr. It is therefore likely that features of this subdomain are important in the autophosphorylation of enzyme I. The helical subdomain of EIN is not found in pyruvate phosphate dikinase; this subdomain is therefore more likely to be involved in phosphoryl transfer to HPr.


  • Organizational Affiliation

    Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ENZYME I
A, B
258Escherichia coliMutation(s): 0 
EC: 2.7.3.9
UniProt
Find proteins for P08839 (Escherichia coli (strain K12))
Explore P08839 
Go to UniProtKB:  P08839
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP08839
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.306 
  • R-Value Work: 0.205 
  • R-Value Observed: 0.205 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 47.42α = 90
b = 75.78β = 90
c = 170.28γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
PROCESSdata reduction
SCALEdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1996-12-07
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-14
    Changes: Data collection, Database references, Other