1HLS

NMR STRUCTURE OF THE HUMAN INSULIN-HIS(B16)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 20 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

High-resolution structure of an engineered biologically potent insulin monomer, B16 Tyr-->His, as determined by nuclear magnetic resonance spectroscopy.

Ludvigsen, S.Roy, M.Thogersen, H.Kaarsholm, N.C.

(1994) Biochemistry 33: 7998-8006

  • DOI: https://doi.org/10.1021/bi00192a003
  • Primary Citation of Related Structures:  
    1HLS

  • PubMed Abstract: 

    Site-directed mutagenesis is used in conjunction with 1H nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy in order to find an insulin species amenable for structure determination in aqueous solution by NMR spectroscopy. A successful candidate in this respect, i.e., B16 Tyr-->His mutant insulin, is identified and selected for detailed characterization by two-dimensional 1H NMR. This mutant species retains 43% biological potency and native folding stability, but in contrast to human insulin it remains monomeric at millimolar concentration in aqueous solution at pH 2.4. The resulting homogeneous sample allows high-quality 2D NMR spectra to be recorded. The NMR studies result in an almost complete assignment of the 1H resonance signals as well as identification of NOE cross peaks. NOE-derived distance restraints in conjunction with torsion restraints based on measured coupling constants, 3JHNH alpha, are used for structure calculations using the hybrid method of distance geometry and simulated annealing. The calculated structures show that the major part of the insulin monomer is structurally well-defined with an average rms deviation between the 20 calculated structures and the mean coordinates of 0.89 A for all backbone atoms, 0.46 A for backbone atoms (A2-A19 and B4-B28), and 1.30 A for all heavy atoms. The structure of the A-chain is composed of two helices from A2 to A7 and from A12 to A19 connected by a short extended strand. The B-chain consists of a loop, B1-B8, an alpha-helix, B9-B19, a beta-turn, B20-B23, and an extended strand from B24 to B30.(ABSTRACT TRUNCATED AT 250 WORDS)


  • Organizational Affiliation

    Novo Research Institute, Novo Nordisk A/S, Bagsvaerd, Denmark.


Macromolecules

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
INSULIN21Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P01308 (Homo sapiens)
Explore P01308 
Go to UniProtKB:  P01308
PHAROS:  P01308
GTEx:  ENSG00000254647 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01308
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
INSULIN30Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P01308 (Homo sapiens)
Explore P01308 
Go to UniProtKB:  P01308
PHAROS:  P01308
GTEx:  ENSG00000254647 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01308
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 20 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1995-09-15
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-11-29
    Changes: Derived calculations, Other