Rpb5 has a bipartite structure which includes a eukaryote-specific N-terminal domain and a C-terminal domain resembling the archaeal RNAP subunit H [1,2]. The N-terminal domain is involved in DNA binding and is part of the jaw module in the RNA p ...
Rpb5 has a bipartite structure which includes a eukaryote-specific N-terminal domain and a C-terminal domain resembling the archaeal RNAP subunit H [1,2]. The N-terminal domain is involved in DNA binding and is part of the jaw module in the RNA pol II structure [3]. This module is important for positioning the downstream DNA.
The two eukaryotic subunits Rpb3 and Rpb11 dimerise to from a platform onto which the other subunits of the RNA polymerase assemble (D/L in archaea). The prokaryotic equivalent of the Rpb3/Rpb11 platform is the alpha-alpha dimer. The dimerisation do ...
The two eukaryotic subunits Rpb3 and Rpb11 dimerise to from a platform onto which the other subunits of the RNA polymerase assemble (D/L in archaea). The prokaryotic equivalent of the Rpb3/Rpb11 platform is the alpha-alpha dimer. The dimerisation domain of the alpha subunit/Rpb3 is interrupted by an insert domain (Pfam:PF01000). Some of the alpha subunits also contain iron-sulphur binding domains (Pfam:PF00037). Rpb11 is found as a continuous domain. Members of this family include: alpha subunit from eubacteria, alpha subunits from chloroplasts, Rpb3 subunits from eukaryotes, Rpb11 subunits from eukaryotes, RpoD subunits from archaeal spp, and RpoL subunits from archaeal spp.
Members of this family include: alpha subunit from eubacteria alpha subunits from chloroplasts Rpb3 subunits from eukaryotes RpoD subunits from archaeal
This domain is found in human Transcription elongation factor SPT5 and related proteins from eukaryotes. SPT5 is a component of the elongation factor DRB-sensitivity inducing factor (DSIF) that plays multiple roles during transcription. SPT5 is a mul ...
This domain is found in human Transcription elongation factor SPT5 and related proteins from eukaryotes. SPT5 is a component of the elongation factor DRB-sensitivity inducing factor (DSIF) that plays multiple roles during transcription. SPT5 is a multidomain protein consisting of an N-terminal NusG domain, a tandem of KOW domains and and a mobile C-terminal-repeat region. This entry represents the KOWx domain that is located between domains KOW3 and KOW4. The KOWx domain along with KOW4 and KOW5 forms an RNA clamp [1]. The tandem KOWx-4 contacts the wall, stalk, and dock domains of Pol II [1].
This family consists of several eukaryotic transcription elongation Spt4 proteins as well as archaebacterial RpoE2 [2]. Three transcription-elongation factors Spt4, Spt5, and Spt6 are conserved among eukaryotes and are essential for transcription via ...
This family consists of several eukaryotic transcription elongation Spt4 proteins as well as archaebacterial RpoE2 [2]. Three transcription-elongation factors Spt4, Spt5, and Spt6 are conserved among eukaryotes and are essential for transcription via the modulation of chromatin structure. Spt4 and Spt5 are tightly associated in a complex, while the physical association of the Spt4-Spt5 complex with Spt6 is considerably weaker. It has been demonstrated that Spt4, Spt5, and Spt6 play roles in transcription elongation in both yeast and humans including a role in activation by Tat. It is known that Spt4, Spt5, and Spt6 are general transcription-elongation factors, controlling transcription both positively and negatively in important regulatory and developmental roles [1]. RpoE2 is one of 13 subunits in the archaeal RNA polymerase. These proteins contain a C4-type zinc finger, and the structure has been solved in [3]. The structure reveals that Spt4-Spt5 binding is governed by an acid-dipole interaction between Spt5 and Spt4, and the complex binds to and travels along the elongating RNA polymerase. The Spt4-Spt5 complex is likely to be an ancient, core component of the transcription elongation machinery.
This domain is found in Tex protein and other related proteins. Tex belongs to a family of prokaryotic transcriptional accessory factors that likely function in a variety of transcriptional processes [1-5].This domain is mainly helical, consisting of ...
This domain is found in Tex protein and other related proteins. Tex belongs to a family of prokaryotic transcriptional accessory factors that likely function in a variety of transcriptional processes [1-5].This domain is mainly helical, consisting of a number of small helices that wrap around a long central helix.
The S1 domain occurs in a wide range of RNA associated proteins. It is structurally similar to cold shock protein which binds nucleic acids. The S1 domain has an OB-fold structure.
The two eukaryotic subunits Rpb3 and Rpb11 dimerise to from a platform onto which the other subunits of the RNA polymerase assemble (D/L in archaea). The prokaryotic equivalent of the Rpb3/Rpb11 platform is the alpha-alpha dimer. The dimerisation do ...
The two eukaryotic subunits Rpb3 and Rpb11 dimerise to from a platform onto which the other subunits of the RNA polymerase assemble (D/L in archaea). The prokaryotic equivalent of the Rpb3/Rpb11 platform is the alpha-alpha dimer. The dimerisation domain of the alpha subunit/Rpb3 is interrupted by an insert domain (Pfam:PF01000). Some of the alpha subunits also contain iron-sulphur binding domains (Pfam:PF00037). Rpb11 is found as a continuous domain. Members of this family include: alpha subunit from eubacteria, alpha subunits from chloroplasts, Rpb3 subunits from eukaryotes, Rpb11 subunits from eukaryotes, RpoD subunits from archaeal spp, and RpoL subunits from archaeal spp. Many of the members of this family carry only the N-terminal region of Rpb11.