6J2X

Yeast proteasome in resting state (C1-a)


Protein Family Annotation Pfam Database Homepage

ChainsAccessionIdentifierDescriptionCommentsSource
A, HPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
Q, XPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
Q, XPF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
R, YPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
R, YPF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
S, ZPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
S, ZPF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
AA, TPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
AA, TPF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
BA, UPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
BA, UPF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
CAPF17862AAA+ lid domain (AAA_lid_3)AAA+ lid domainThis entry represents the alpha helical AAA+ lid domain that is found to the C-terminus of AAA domains.Domain
CAPF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
DAPF16450Proteasomal ATPase OB C-terminal domain (Prot_ATP_ID_OB)Proteasomal ATPase OB C-terminal domainThis is the interdomain (ID) or oligonucleotide binding (OB) domain of proteasomal ATPase [1-2]Domain
DAPF17862AAA+ lid domain (AAA_lid_3)AAA+ lid domainThis entry represents the alpha helical AAA+ lid domain that is found to the C-terminus of AAA domains.Domain
DAPF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
EAPF16450Proteasomal ATPase OB C-terminal domain (Prot_ATP_ID_OB)Proteasomal ATPase OB C-terminal domainThis is the interdomain (ID) or oligonucleotide binding (OB) domain of proteasomal ATPase [1-2]Domain
EAPF17862AAA+ lid domain (AAA_lid_3)AAA+ lid domainThis entry represents the alpha helical AAA+ lid domain that is found to the C-terminus of AAA domains.Domain
EAPF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
FAPF16450Proteasomal ATPase OB C-terminal domain (Prot_ATP_ID_OB)Proteasomal ATPase OB C-terminal domainThis is the interdomain (ID) or oligonucleotide binding (OB) domain of proteasomal ATPase [1-2]Domain
FAPF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
GAPF16450Proteasomal ATPase OB C-terminal domain (Prot_ATP_ID_OB)Proteasomal ATPase OB C-terminal domainThis is the interdomain (ID) or oligonucleotide binding (OB) domain of proteasomal ATPase [1-2]Domain
GAPF17862AAA+ lid domain (AAA_lid_3)AAA+ lid domainThis entry represents the alpha helical AAA+ lid domain that is found to the C-terminus of AAA domains.Domain
GAPF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
B, IPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
B, IPF12465Proteasome beta subunits C terminal (Pr_beta_C)Proteasome beta subunits C terminal- Family
HAPF16450Proteasomal ATPase OB C-terminal domain (Prot_ATP_ID_OB)Proteasomal ATPase OB C-terminal domainThis is the interdomain (ID) or oligonucleotide binding (OB) domain of proteasomal ATPase [1-2]Domain
HAPF17862AAA+ lid domain (AAA_lid_3)AAA+ lid domainThis entry represents the alpha helical AAA+ lid domain that is found to the C-terminus of AAA domains.Domain
HAPF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
IAPF1800426S proteasome regulatory subunit RPN2 C-terminal domain (RPN2_C)26S proteasome regulatory subunit RPN2 C-terminal domainThis is the C-terminal domain found in S. cerevisiae Rpn2 (26S proteasome regulatory subunit RPN2) as well as other eukaryotic species. A study revealed that the C-terminal 52 residues of the Rpn2 C-terminal domain are responsible for mediating inter ...This is the C-terminal domain found in S. cerevisiae Rpn2 (26S proteasome regulatory subunit RPN2) as well as other eukaryotic species. A study revealed that the C-terminal 52 residues of the Rpn2 C-terminal domain are responsible for mediating interactions with the ubiquitin-binding subunit Rpn13. Futhermore, the extreme C-terminal 20 or 21 residues of Rpn2 (926-945 or 925-945) of S. cerevisiae, were shown to be equally effective at binding Rpn13. Multiple sequence alignments indicate that Rpn2 orthologs are highly conserved in this C-terminal region and share characteristic acidic, aromatic, and proline residues, suggesting a common function. In the structure of Rpn2 from S. cerevisiae , this region is exposed and disordered, and is thus accessible for associating with Rpn13. The Rpn2 binding surface of human Rpn13 has been mapped by nuclear magnetic resonance titration to one surface of its Pru domain [1].
Domain
IAPF01851Proteasome/cyclosome repeat (PC_rep)Proteasome/cyclosome repeat- Repeat
JAPF18261Rpn9 C-terminal helix (Rpn9_C)Rpn9 C-terminal helix- Family
JAPF01399PCI domain (PCI)PCI domainThis domain has also been called the PINT motif (Proteasome, Int-6, Nip-1 and TRIP-15) [1].Domain
KAPF1809826S proteasome regulatory subunit RPN5 C-terminal domain (RPN5_C)26S proteasome regulatory subunit RPN5 C-terminal domainThis is the C-terminal domain of the 26S proteasome regulatory subunit RPN5 proteins.This helical domain can be found adjacent to Pfam:PF01399. The 26S proteasome is the major ATP-dependent protease in eukaryotes. Three subcomplexes form this degrada ...This is the C-terminal domain of the 26S proteasome regulatory subunit RPN5 proteins.This helical domain can be found adjacent to Pfam:PF01399. The 26S proteasome is the major ATP-dependent protease in eukaryotes. Three subcomplexes form this degradation machine: the lid, the base, and the core. The helices found at the C terminus of each lid subunit form a helical bundle that directs the ordered self-assembly of the lid subcomplex. This domain which comprises the tail of RPN5 along with the tail of Rpn9, are important for Rpn12 binding to the lid [1].
Domain
KAPF01399PCI domain (PCI)PCI domainThis domain has also been called the PINT motif (Proteasome, Int-6, Nip-1 and TRIP-15) [1].Domain
LAPF1805526S proteasome regulatory subunit RPN6 N-terminal domain (RPN6_N)26S proteasome regulatory subunit RPN6 N-terminal domainThis is the N-terminal domain found in RPN6 proteins (26S proteasome regulatory subunit). The 26S proteasome holocomplex consists of a 28-subunit barrel-shaped core particle (CP) in the center capped at the top and bottom by 19-subunit regulatory pa ...This is the N-terminal domain found in RPN6 proteins (26S proteasome regulatory subunit). The 26S proteasome holocomplex consists of a 28-subunit barrel-shaped core particle (CP) in the center capped at the top and bottom by 19-subunit regulatory particles (RPs). The CP forms the catalytic chamber and the RP is formed from two subcomplexes known as the lid and the base [1]. The lid comprises nine Rpn subunits in yeast (Rpn3/5/6/7/8/9/11/12/15) and the base comprises three Rpn subunits (Rpn1/2/13) and six ATPases (Rpt1-6) [2]. Phosphorylation of Rpn6 enhances proteasome ATPase activity and promotes the formation of doubly capped (30S) proteasome, hence accelerating the degradation of short-lived proteins [3].
Domain
LAPF1850326S proteasome subunit RPN6 C-terminal helix domain (RPN6_C_helix)26S proteasome subunit RPN6 C-terminal helix domainThis is the C-terminal helix domain found in RPN6, a component of the 26S proteasome. The C-terminal helices are essential for lid assembly [1, 2].Domain
LAPF01399PCI domain (PCI)PCI domainThis domain has also been called the PINT motif (Proteasome, Int-6, Nip-1 and TRIP-15) [1].Domain
MAPF01399PCI domain (PCI)PCI domainThis domain has also been called the PINT motif (Proteasome, Int-6, Nip-1 and TRIP-15) [1].Domain
MAPF1060226S proteasome subunit RPN7 (RPN7)26S proteasome subunit RPN7- Family
NAPF08375Proteasome regulatory subunit C-terminal (Rpn3_C)Proteasome regulatory subunit C-terminal- Family
NAPF01399PCI domain (PCI)PCI domainThis domain has also been called the PINT motif (Proteasome, Int-6, Nip-1 and TRIP-15) [1].Domain
OAPF10075CSN8/PSMD8/EIF3K family (CSN8_PSD8_EIF3K)CSN8/PSMD8/EIF3K family- Family
PAPF13012Maintenance of mitochondrial structure and function (MitMem_reg)Maintenance of mitochondrial structure and function- Family
PAPF01398JAB1/Mov34/MPN/PAD-1 ubiquitin protease (JAB)JAB1/Mov34/MPN/PAD-1 ubiquitin protease- Family
QAPF13012Maintenance of mitochondrial structure and function (MitMem_reg)Maintenance of mitochondrial structure and function- Family
QAPF01398JAB1/Mov34/MPN/PAD-1 ubiquitin protease (JAB)JAB1/Mov34/MPN/PAD-1 ubiquitin protease- Family
C, JPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
RAPF13519von Willebrand factor type A domain (VWA_2)von Willebrand factor type A domain- Domain
SAPF04683Proteasome complex subunit Rpn13 ubiquitin receptor (Proteasom_Rpn13)Proteasome complex subunit Rpn13 ubiquitin receptorThis family was thought originally to be involved in cell-adhesion [1,2], but the members are now known to be proteasome subunit Rpn13, a novel ubiquitin receptor. The 26S proteasome is a huge macromolecular protein-degradation machine consisting of ...This family was thought originally to be involved in cell-adhesion [1,2], but the members are now known to be proteasome subunit Rpn13, a novel ubiquitin receptor. The 26S proteasome is a huge macromolecular protein-degradation machine consisting of a proteolytically active 20S core, in the form of four disc-like proteins, and one or two 19S regulatory particles. The regulatory particle(s) sit on the top and or bottom of the core, de-ubiquitinate the substrate peptides, unfold them and guide them into the narrow channel through the centre of the core. Rpn13 and its homologues dock onto the regulatory particle through the N-terminal region which binds Rpn2. The C-terminal part of the domain binds de-ubiquitinating enzyme Uch37/UCHL5 and enhances its isopeptidase activity. Rpn13 binds ubiquitin via a conserved amino-terminal region called the pleckstrin-like receptor for ubiquitin, termed Pru, domain [4]. The domain forms two contiguous anti-parallel beta-sheets with a configuration similar to the pleckstrin-homology domain (PHD) fold [5]. Rpn13's ability to bind ubiquitin and the proteasome subunit Rpn2/S1 simultaneously supports evidence of its role as a ubiquitin receptor. Finally, when complexed to di-ubiquitin, via the Pru, and Uch37 via the C-terminal part, it frees up the distal ubiquitin for de-ubiquitination by the Uch37 [5].
Domain
TAPF05160DSS1/SEM1 family (DSS1_SEM1)DSS1/SEM1 family- Family
UAPF17781RPN1/RPN2 N-terminal domain (RPN1_RPN2_N)RPN1/RPN2 N-terminal domainThis domain is found at the N-terminus of the 26S proteasome regulatory subunits RPN1 and RPN2. The domain is formed by an array of alpha helices [2].Domain
UAPF01851Proteasome/cyclosome repeat (PC_rep)Proteasome/cyclosome repeat- Repeat
UAPF1805126S proteasome non-ATPase regulatory subunit RPN1 C-terminal (RPN1_C)26S proteasome non-ATPase regulatory subunit RPN1 C-terminalThis is the C-terminal domain found in RPN1 proteins (26S proteasome non-ATPase regulatory subunit 2). The 26S proteasome holocomplex consists of a 28-subunit barrel-shaped core particle (CP) in the center capped at the top and bottom by 19-subunit ...This is the C-terminal domain found in RPN1 proteins (26S proteasome non-ATPase regulatory subunit 2). The 26S proteasome holocomplex consists of a 28-subunit barrel-shaped core particle (CP) in the center capped at the top and bottom by 19-subunit regulatory particles (RPs). The CP forms the catalytic chamber and the RP is formed from two subcomplexes known as the lid and the base [1]. The lid comprises nine Rpn subunits in yeast (Rpn3/5/6/7/8/9/11/12/15) and the base comprises three Rpn subunits (Rpn1/2/13) and six ATPases (Rpt1-6) [2].
Domain
D, KPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
E, LPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
F, MPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
G, NPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
O, VPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
O, VPF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
P, WPF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
P, WPF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family

Gene Product Annotation Gene Product Annotation

ChainsPolymerMolecular FunctionBiological ProcessCellular Component
1, bProteasome subunit beta type-1
C, dProteasome subunit alpha type-3
D, nProteasome subunit alpha type-4
E, mProteasome subunit alpha type-5
F, lProteasome subunit alpha type-6
G, kProbable proteasome subunit alpha type-7
H26S proteasome regulatory subunit 7 homolog
I26S PROTEASE REGULATORY SUBUNIT 4 HOMOLOG
J26S proteasome regulatory subunit 8 homolog
K26S proteasome regulatory subunit 6B homolog
L26S proteasome subunit RPT4
2, iProteasome subunit beta type-2
M26S proteasome regulatory subunit 6A
N26S proteasome regulatory subunit RPN2
O26S proteasome regulatory subunit RPN9
P26S PROTEASOME REGULATORY SUBUNIT RPN5
Q26S proteasome regulatory subunit RPN6
R26S proteasome regulatory subunit RPN7
S26S proteasome regulatory subunit RPN3
T26S proteasome regulatory subunit RPN12
U26S proteasome regulatory subunit RPN8
VUbiquitin carboxyl-terminal hydrolase RPN11
3, hProteasome subunit beta type-3
W26S proteasome regulatory subunit RPN10
X26S proteasome regulatory subunit RPN13
Y26S proteasome complex subunit SEM1
Z26S proteasome regulatory subunit RPN1
4, gProteasome subunit beta type-4
5, fProteasome subunit beta type-5
6, ePROTEASOME COMPONENT C5
7, aProteasome subunit beta type-7
A, cProteasome subunit alpha type-1
B, jProteasome subunit alpha type-2