5ZWM

Cryo-EM structure of the yeast pre-B complex at an average resolution of 3.4~4.6 angstrom (tri-snRNP and U2 snRNP Part)


Protein Family Annotation Pfam Database Homepage

ChainsAccessionIdentifierDescriptionCommentsSource
APF10597U5-snRNA binding site 2 of PrP8 (U5_2-snRNA_bdg)U5-snRNA binding site 2 of PrP8The essential spliceosomal protein Prp8 interacts with U5 and U6 snRNAs and with specific pre-mRNA sequences that participate in catalysis [1]. This close association with crucial RNA sequences, together with extensive genetic evidence, suggests that ...The essential spliceosomal protein Prp8 interacts with U5 and U6 snRNAs and with specific pre-mRNA sequences that participate in catalysis [1]. This close association with crucial RNA sequences, together with extensive genetic evidence, suggests that Prp8 could directly affect the function of the catalytic core, perhaps acting as a splicing cofactor [2].
Domain
APF10598RNA recognition motif of the spliceosomal PrP8 (RRM_4)RNA recognition motif of the spliceosomal PrP8The large RNA-protein complex of the spliceosome catalyses pre-mRNA splicing. One of the most conserved core proteins is PrP8 which occupies a central position in the catalytic core of the spliceosome, and has been implicated in several crucial molec ...The large RNA-protein complex of the spliceosome catalyses pre-mRNA splicing. One of the most conserved core proteins is PrP8 which occupies a central position in the catalytic core of the spliceosome, and has been implicated in several crucial molecular rearrangements that occur there, and has recently come under the spotlight for its role in the inherited human disease, Retinitis Pigmentosa [1]. The RNA-recognition motif of PrP8 is highly conserved and provides a possible RNA binding centre for the 5-prime SS, BP, or 3-prime SS of pre-mRNA which are known to contact with Prp8. The most conserved regions of an RRM are defined as the RNP1 and RNP2 sequences. Recognition of RNA targets can also be modulated by a number of other factors, most notably the two loops beta1-alpha1, beta2-beta3 and the amino acid residues C-terminal to the RNP2 domain [2].
Domain
APF10596U6-snRNA interacting domain of PrP8 (U6-snRNA_bdg)U6-snRNA interacting domain of PrP8This domain incorporates the interacting site for the U6-snRNA as part of the U4/U6.U5 tri-snRNPs complex of the spliceosome, and is the prime candidate for the role of cofactor for the spliceosome's RNA core. The essential spliceosomal protein Prp8 ...This domain incorporates the interacting site for the U6-snRNA as part of the U4/U6.U5 tri-snRNPs complex of the spliceosome, and is the prime candidate for the role of cofactor for the spliceosome's RNA core. The essential spliceosomal protein Prp8 interacts with U5 and U6 snRNAs and with specific pre-mRNA sequences that participate in catalysis. This close association with crucial RNA sequences, together with extensive genetic evidence, suggests that Prp8 could directly affect the function of the catalytic core, perhaps acting as a splicing cofactor [1].
Domain
APF12134PRP8 domain IV core (PRP8_domainIV)PRP8 domain IV coreThis domain is found in eukaryotes, and is about 20 amino acids in length. It is found associated with Pfam:PF10597, Pfam:PF10596, Pfam:PF10598, Pfam:PF08083, Pfam:PF08082, Pfam:PF01398, Pfam:PF08084. There is a conserved LILR sequence motif. The dom ...This domain is found in eukaryotes, and is about 20 amino acids in length. It is found associated with Pfam:PF10597, Pfam:PF10596, Pfam:PF10598, Pfam:PF08083, Pfam:PF08082, Pfam:PF01398, Pfam:PF08084. There is a conserved LILR sequence motif. The domain is a selenomethionine domain in a subunit of the spliceosome. The function of PRP8 domain IV is believed to be interaction with the splicosomal core.
Domain
APF08082PRO8NT (NUC069), PrP8 N-terminal domain (PRO8NT)PRO8NT (NUC069), PrP8 N-terminal domainThe PRO8NT domain is found at the N-terminus of pre-mRNA splicing factors of PRO8 family [1]. The NLS or nuclear localisation signal for these spliceosome proteins begins at the start and runs for 60 residues. N-terminal to this domain is a highly va ...The PRO8NT domain is found at the N-terminus of pre-mRNA splicing factors of PRO8 family [1]. The NLS or nuclear localisation signal for these spliceosome proteins begins at the start and runs for 60 residues. N-terminal to this domain is a highly variable proline-rich region [4].
Domain
APF08083PROCN (NUC071) domain (PROCN)PROCN (NUC071) domainThe PROCN domain is the central domain in pre-mRNA splicing factors of PRO8 family [1].Domain
APF08084PROCT (NUC072) domain (PROCT)PROCT (NUC072) domainThe PROCT domain is the C-terminal domain in pre-mRNA splicing factors of PRO8 family [1].Domain
CPF09785Prp31 C terminal domain (Prp31_C)Prp31 C terminal domain- Family
CPF01798snoRNA binding domain, fibrillarin (Nop)snoRNA binding domain, fibrillarin- Family
DPF06424PRP1 splicing factor, N-terminal (PRP1_N)PRP1 splicing factor, N-terminalThis domain is specific to the N-terminal part of the prp1 splicing factor, which is involved in mRNA splicing (and possibly also poly(A)+ RNA nuclear export and cell cycle progression). This domain is specific to the N terminus of the RNA splicing f ...This domain is specific to the N-terminal part of the prp1 splicing factor, which is involved in mRNA splicing (and possibly also poly(A)+ RNA nuclear export and cell cycle progression). This domain is specific to the N terminus of the RNA splicing factor encoded by prp1 [1]. It is involved in mRNA splicing and possibly also poly(A)and RNA nuclear export and cell cycle progression.
Domain
EPF08572pre-mRNA processing factor 3 (PRP3) (PRP3)pre-mRNA processing factor 3 (PRP3)Pre-mRNA processing factor 3 (PRP3) is a U4/U6-associated splicing factor. The human PRP3 has been implicated in autosomal retinitis pigmentosa [2].Domain
EPF06544Protein of unknown function (DUF1115) (DUF1115)Protein of unknown function (DUF1115)This family represents the C-terminus of hypothetical eukaryotic proteins of unknown function.Domain
FPF02966Mitosis protein DIM1 (DIM1)Mitosis protein DIM1- Domain
GPF01248Ribosomal protein L7Ae/L30e/S12e/Gadd45 family (Ribosomal_L7Ae)Ribosomal protein L7Ae/L30e/S12e/Gadd45 familyThis family includes: Ribosomal L7A from metazoa, Ribosomal L8-A and L8-B from fungi, 30S ribosomal protein HS6 from archaebacteria, 40S ribosomal protein S12 from eukaryotes, Ribosomal protein L30 from eukaryotes and archaebacteria. Gadd45 and MyD11 ...This family includes: Ribosomal L7A from metazoa, Ribosomal L8-A and L8-B from fungi, 30S ribosomal protein HS6 from archaebacteria, 40S ribosomal protein S12 from eukaryotes, Ribosomal protein L30 from eukaryotes and archaebacteria. Gadd45 and MyD118 [1].
Domain
HPF00679Elongation factor G C-terminus (EFG_C)Elongation factor G C-terminusThis domain includes the carboxyl terminal regions of Elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopt a ferredoxin-like fold.Domain
HPF00009Elongation factor Tu GTP binding domain (GTP_EFTU)Elongation factor Tu GTP binding domainThis domain contains a P-loop motif, also found in several other families such as Pfam:PF00071, Pfam:PF00025 and Pfam:PF00063. Elongation factor Tu consists of three structural domains, this plus two C-terminal beta barrel domains.Domain
HPF16004116 kDa U5 small nuclear ribonucleoprotein component N-terminus (EFTUD2)116 kDa U5 small nuclear ribonucleoprotein component N-terminus- Family
HPF03144Elongation factor Tu domain 2 (GTP_EFTU_D2)Elongation factor Tu domain 2Elongation factor Tu consists of three structural domains, this is the second domain. This domain adopts a beta barrel structure. This the second domain is involved in binding to charged tRNA [1]. This domain is also found in other proteins such as e ...Elongation factor Tu consists of three structural domains, this is the second domain. This domain adopts a beta barrel structure. This the second domain is involved in binding to charged tRNA [1]. This domain is also found in other proteins such as elongation factor G and translation initiation factor IF-2. This domain is structurally related to Pfam:PF03143, and in fact has weak sequence matches to this domain.
Domain
HPF03764Elongation factor G, domain IV (EFG_IV)Elongation factor G, domain IVThis domain is found in elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopts a ribosomal protein S5 domain 2-like fold.Domain
IPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
JPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
KPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
MPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
NPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
OPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
SPF03343SART-1 family (SART-1)SART-1 family- Family
EA, OA, TPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
BA, KA, UPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
CA, PA, VPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
DA, QA, WPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
FA, LA, XPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
HA, NA, ZPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
AAPF02889Sec63 Brl domain (Sec63)Sec63 Brl domain- Family
AAPF00270DEAD/DEAH box helicase (DEAD)DEAD/DEAH box helicaseMembers of this family include the DEAD and DEAH box helicases. Helicases are involved in unwinding nucleic acids. The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome ...Members of this family include the DEAD and DEAH box helicases. Helicases are involved in unwinding nucleic acids. The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome biogenesis, nucleocytoplasmic transport, translation, RNA decay and organellar gene expression.
Domain
AAPF00271Helicase conserved C-terminal domain (Helicase_C)Helicase conserved C-terminal domainThe Prosite family is restricted to DEAD/H helicases, whereas this domain family is found in a wide variety of helicases and helicase related proteins. It may be that this is not an autonomously folding unit, but an integral part of the helicase.Domain
AAPF18149N-terminal helicase PWI domain (Helicase_PWI)N-terminal helicase PWI domainThis domain is found in spliceosomal RNA helicase Brr2. Brr2 is required for the assembly of a catalytically active spliceosome on a messenger RNA precursor. The domain is found in the N-terminal region and is non-canonically PWI-like. The PWI-like d ...This domain is found in spliceosomal RNA helicase Brr2. Brr2 is required for the assembly of a catalytically active spliceosome on a messenger RNA precursor. The domain is found in the N-terminal region and is non-canonically PWI-like. The PWI-like domain is thought to be involved in protein-protein interactions [1].
Domain
UAPF04037Domain of unknown function (DUF382) (DUF382)Domain of unknown function (DUF382)- Family
UAPF04046PSP (PSP)PSP- Family
VAPF03178CPSF A subunit region (CPSF_A)CPSF A subunit region- Repeat
WAPF00076RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain) (RRM_1)RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The mo ...The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins (Swiss:P05455) have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteristic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins (Swiss:P05455) are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.
Domain
XAPF03660PHF5-like protein (PHF5)PHF5-like protein- Family
YAPF07189Splicing factor 3B subunit 10 (SF3b10) (SF3b10)Splicing factor 3B subunit 10 (SF3b10)- Family
ABPF09736Pre-mRNA-splicing factor of RES complex (Bud13)Pre-mRNA-splicing factor of RES complex- Family
BBPF00498FHA domain (FHA)FHA domain- Family
CBPF16958Pre-mRNA-splicing factor PRP9 N-terminus (PRP9_N)Pre-mRNA-splicing factor PRP9 N-terminusThis is the N-terminal domain of pre-mRNA-splicing factor PRP9 [1].Domain
CBPF16837Pre-mRNA-splicing factor SF3A3, of SF3a complex, Prp9 (SF3A3)Pre-mRNA-splicing factor SF3A3, of SF3a complex, Prp9SF3A3 is one of the components of the SF3a splicing factor complex of the mature U2 snRNP (small nuclear ribonucleoprotein particle). In yeast, SF3a shows a bifurcated assembly structure of three subunits, Prp9 (subunit 3), Prp11 (subunit 2) and Prp2 ...SF3A3 is one of the components of the SF3a splicing factor complex of the mature U2 snRNP (small nuclear ribonucleoprotein particle). In yeast, SF3a shows a bifurcated assembly structure of three subunits, Prp9 (subunit 3), Prp11 (subunit 2) and Prp21 (subunit 1). Prp9 and Prp21 were not thought to interact with each other but the alpha1 helix of Prp9 does make important contacts with the SURP2 domain of Prp21, thus the two do interact via a bidentate-binding mode. Prp9 harbours a major binding site for stem-loop IIa of U2 snRNA [1].
Domain
CBPF12171Zinc-finger double-stranded RNA-binding (zf-C2H2_jaz)Zinc-finger double-stranded RNA-binding- Family
CBPF11931SF3a60/Prp9 C-terminal (SF3a60_Prp9_C)SF3a60/Prp9 C-terminal- Family
DBPF12230Pre-mRNA splicing factor PRP21 like protein (PRP21_like_P)Pre-mRNA splicing factor PRP21 like protein- Family
DBPF01805Surp module (Surp)Surp module- Family
EBPF16835Pre-mRNA-splicing factor SF3a complex subunit 2 (Prp11) (SF3A2)Pre-mRNA-splicing factor SF3a complex subunit 2 (Prp11)SF3A2 is one of the components of the SF3a splicing factor complex of the mature U2 snRNP (small nuclear ribonucleoprotein particle). In yeast, SF3a shows a bifurcated assembly structure of three subunits, Prp9 (subunit 3), Prp11 (subunit 2) and Prp2 ...SF3A2 is one of the components of the SF3a splicing factor complex of the mature U2 snRNP (small nuclear ribonucleoprotein particle). In yeast, SF3a shows a bifurcated assembly structure of three subunits, Prp9 (subunit 3), Prp11 (subunit 2) and Prp21 (subunit 1). with Prp21 wrapping around Prp11 [1].
Domain
LPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
BPF00400WD domain, G-beta repeat (WD40)WD domain, G-beta repeat- Repeat
GA, MA, YPF01423LSM domain (LSM)LSM domainThe LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
Domain
ZAPF00076RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain) (RRM_1)RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The mo ...The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins (Swiss:P05455) have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteristic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins (Swiss:P05455) are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.
Domain

Gene Product Annotation Gene Product Annotation

ChainsPolymerMolecular FunctionBiological ProcessCellular Component
APre-mRNA-splicing factor 8
LPre-mRNA-processing factor 31
NPre-mRNA-splicing factor 6
JU4/U6 small nuclear ribonucleoprotein PRP3
ESpliceosomal protein DIB1
M13 kDa ribonucleoprotein-associated protein
CPre-mRNA-splicing factor SNU114
zU6 snRNA-associated Sm-like protein LSm8
qU6 snRNA-associated Sm-like protein LSm2
rU6 snRNA-associated Sm-like protein LSm3
tU6 snRNA-associated Sm-like protein LSm5
yU6 snRNA-associated Sm-like protein LSm7
sU6 snRNA-associated Sm-like protein LSm4
FU6 snRNAnone none none
IU4 snRNAnone none none
BU5 snRNAnone none none
O66 kDa U4/U6.U5 small nuclear ribonucleoprotein component
S, d, lSmall nuclear ribonucleoprotein Sm D3
P, a, hSmall nuclear ribonucleoprotein-associated protein B
Q, b, mSmall nuclear ribonucleoprotein Sm D1
R, c, nSmall nuclear ribonucleoprotein Sm D2
T, e, iSmall nuclear ribonucleoprotein E
V, g, kSmall nuclear ribonucleoprotein G
DPre-mRNA-splicing helicase BRR2
GPre-mRNA-BPSnone none none
HU2 snRNAnone none none
oU2 small nuclear ribonucleoprotein A'
pU2 small nuclear ribonucleoprotein B''
1U2 snRNP component HSH155
2Cold sensitive U2 snRNA suppressor 1
3Pre-mRNA-splicing factor RSE1
4Protein HSH49
5Pre-mRNA-splicing factor RDS3
6RDS3 complex subunit 10
YPre-mRNA-splicing factor CWC26
ZPre-mRNA leakage protein 1
uPre-mRNA-splicing factor PRP9
wPre-mRNA-splicing factor PRP21
vPre-mRNA-splicing factor PRP11
xU6 snRNA-associated Sm-like protein LSm6
KU4/U6 small nuclear ribonucleoprotein PRP4
U, f, jSmall nuclear ribonucleoprotein F
XU2 snRNP component IST3