The essential spliceosomal protein Prp8 interacts with U5 and U6 snRNAs and with specific pre-mRNA sequences that participate in catalysis [1]. This close association with crucial RNA sequences, together with extensive genetic evidence, suggests that ...
The essential spliceosomal protein Prp8 interacts with U5 and U6 snRNAs and with specific pre-mRNA sequences that participate in catalysis [1]. This close association with crucial RNA sequences, together with extensive genetic evidence, suggests that Prp8 could directly affect the function of the catalytic core, perhaps acting as a splicing cofactor [2].
The large RNA-protein complex of the spliceosome catalyses pre-mRNA splicing. One of the most conserved core proteins is PrP8 which occupies a central position in the catalytic core of the spliceosome, and has been implicated in several crucial molec ...
The large RNA-protein complex of the spliceosome catalyses pre-mRNA splicing. One of the most conserved core proteins is PrP8 which occupies a central position in the catalytic core of the spliceosome, and has been implicated in several crucial molecular rearrangements that occur there, and has recently come under the spotlight for its role in the inherited human disease, Retinitis Pigmentosa [1]. The RNA-recognition motif of PrP8 is highly conserved and provides a possible RNA binding centre for the 5-prime SS, BP, or 3-prime SS of pre-mRNA which are known to contact with Prp8. The most conserved regions of an RRM are defined as the RNP1 and RNP2 sequences. Recognition of RNA targets can also be modulated by a number of other factors, most notably the two loops beta1-alpha1, beta2-beta3 and the amino acid residues C-terminal to the RNP2 domain [2].
This domain incorporates the interacting site for the U6-snRNA as part of the U4/U6.U5 tri-snRNPs complex of the spliceosome, and is the prime candidate for the role of cofactor for the spliceosome's RNA core. The essential spliceosomal protein Prp8 ...
This domain incorporates the interacting site for the U6-snRNA as part of the U4/U6.U5 tri-snRNPs complex of the spliceosome, and is the prime candidate for the role of cofactor for the spliceosome's RNA core. The essential spliceosomal protein Prp8 interacts with U5 and U6 snRNAs and with specific pre-mRNA sequences that participate in catalysis. This close association with crucial RNA sequences, together with extensive genetic evidence, suggests that Prp8 could directly affect the function of the catalytic core, perhaps acting as a splicing cofactor [1].
This domain is found in eukaryotes, and is about 20 amino acids in length. It is found associated with Pfam:PF10597, Pfam:PF10596, Pfam:PF10598, Pfam:PF08083, Pfam:PF08082, Pfam:PF01398, Pfam:PF08084. There is a conserved LILR sequence motif. The dom ...
This domain is found in eukaryotes, and is about 20 amino acids in length. It is found associated with Pfam:PF10597, Pfam:PF10596, Pfam:PF10598, Pfam:PF08083, Pfam:PF08082, Pfam:PF01398, Pfam:PF08084. There is a conserved LILR sequence motif. The domain is a selenomethionine domain in a subunit of the spliceosome. The function of PRP8 domain IV is believed to be interaction with the splicosomal core.
The PRO8NT domain is found at the N-terminus of pre-mRNA splicing factors of PRO8 family [1]. The NLS or nuclear localisation signal for these spliceosome proteins begins at the start and runs for 60 residues. N-terminal to this domain is a highly va ...
The PRO8NT domain is found at the N-terminus of pre-mRNA splicing factors of PRO8 family [1]. The NLS or nuclear localisation signal for these spliceosome proteins begins at the start and runs for 60 residues. N-terminal to this domain is a highly variable proline-rich region [4].
This family of domains contain a P-loop motif that is characteristic of the AAA superfamily. Many of the proteins in this family are conjugative transfer proteins.
This family of domains contain a P-loop motif that is characteristic of the AAA superfamily. Many of the proteins in this family are conjugative transfer proteins.
Cyclophilin type peptidyl-prolyl cis-trans isomerase/CLD
The peptidyl-prolyl cis-trans isomerases, also known as cyclophilins, share this domain of about 109 amino acids. Cyclophilins have been found in all organisms studied so far and catalyse peptidyl-prolyl isomerisation during which the peptide bond pr ...
The peptidyl-prolyl cis-trans isomerases, also known as cyclophilins, share this domain of about 109 amino acids. Cyclophilins have been found in all organisms studied so far and catalyse peptidyl-prolyl isomerisation during which the peptide bond preceding proline (the peptidyl-prolyl bond) is stabilised in the cis conformation. Mammalian cyclophilin A (CypA) is a major cellular target for the immunosuppressive drug cyclosporin A (CsA). Other roles for cyclophilins may include chaperone and cell signalling function [1].
This presumed domain is about 90 amino acid residues in length. It is found is a diverse set of RNA helicases. Its function is unknown, however it seems likely to be involved in nucleic acid binding.
This family is found towards the C-terminus of the DEAD-box helicases (Pfam:PF00270). In these helicases it is apparently always found in association with Pfam:PF04408. There do seem to be a couple of instances where it occurs by itself - e.g. Swiss: ...
This family is found towards the C-terminus of the DEAD-box helicases (Pfam:PF00270). In these helicases it is apparently always found in association with Pfam:PF04408. There do seem to be a couple of instances where it occurs by itself - e.g. Swiss:Q84VZ2. The structure PDB:3i4u adopts an OB-fold. helicases (Pfam:PF00270). In these helicases it is apparently always found in association with Pfam:PF04408. This C-terminal domain of the yeast helicase contains an oligonucleotide/oligosaccharide-binding (OB)-fold which seems to be placed at the entrance of the putative nucleic acid cavity. It also constitutes the binding site for the G-patch-containing domain of Pfa1p. When found on DEAH/RHA helicases, this domain is central to the regulation of the helicase activity through its binding of both RNA and G-patch domain proteins [1].
The S1 domain occurs in a wide range of RNA associated proteins. It is structurally similar to cold shock protein which binds nucleic acids. The S1 domain has an OB-fold structure.
The spliceosome, an assembly of snRNAs (U1, U2, U4/U6, and U5) and proteins, catalyses the excision of introns from pre-mRNAs in two successive trans-esterification reactions. Step 2 depends upon integral spliceosome constituents such as U5 snRNA and ...
The spliceosome, an assembly of snRNAs (U1, U2, U4/U6, and U5) and proteins, catalyses the excision of introns from pre-mRNAs in two successive trans-esterification reactions. Step 2 depends upon integral spliceosome constituents such as U5 snRNA and Prp8 and non-spliceosomal proteins Prp16, Slu7, Prp18, and Prp22. ATP hydrolysis by the DEAH-box enzyme Prp16 promotes a conformational change in the spliceosome that leads to protection of the 3'ss from targeted RNase H cleavage. This change, which probably reflects binding of the 3'ss PyAG in the catalytic centre of the spliceosome, requires the ordered recruitment of Slu7, Prp18, and Prp22 to the spliceosome. There is a close functional relationship between Prp8, Prp18, and Slu7, and Prp18 interacts with Slu7, so that together they recruit Prp22 to the spliceosome. Most members of the family carry a zinc-finger of the CCHC-type upstream of this domain.
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
This regions is found specifically in PRP19-like protein. The region represented by this family covers the sequence implicated in self-interaction and a coiled-coiled motif [1]. PRP19-like proteins form an oligomer that is necessary ...
This regions is found specifically in PRP19-like protein. The region represented by this family covers the sequence implicated in self-interaction and a coiled-coiled motif [1]. PRP19-like proteins form an oligomer that is necessary for spliceosome assembly [1].
Members of this family include the DEAD and DEAH box helicases. Helicases are involved in unwinding nucleic acids. The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome ...
Members of this family include the DEAD and DEAH box helicases. Helicases are involved in unwinding nucleic acids. The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome biogenesis, nucleocytoplasmic transport, translation, RNA decay and organellar gene expression.
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)
The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The mo ...
The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins (Swiss:P05455) have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteristic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins (Swiss:P05455) are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.
This domain is found on CASC3 (cancer susceptibility candidate gene 3 protein) which is also known as Barentsz (Btz). CASC3 is a component of the EJC (exon junction complex) which is a complex that is involved in post-transcriptional regulation of m ...
This domain is found on CASC3 (cancer susceptibility candidate gene 3 protein) which is also known as Barentsz (Btz). CASC3 is a component of the EJC (exon junction complex) which is a complex that is involved in post-transcriptional regulation of mRNA in metazoa. The complex is formed by the association of four proteins (eIF4AIII, Barentsz, Mago, and Y14), mRNA, and ATP. This domain wraps around eIF4AIII and stacks against the 5' nucleotide [1][2].
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)
The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The mo ...
The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins (Swiss:P05455) have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteristic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins (Swiss:P05455) are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.
The cwf21 family is involved in mRNA splicing. It has been isolated as a subcomplex of the splicosome in Schizosaccharomyces pombe [1]. The function of the cwf21 domain is to bind directly to the spliceosomal protein Prp8. Mutations in the cwf21 dom ...
The cwf21 family is involved in mRNA splicing. It has been isolated as a subcomplex of the splicosome in Schizosaccharomyces pombe [1]. The function of the cwf21 domain is to bind directly to the spliceosomal protein Prp8. Mutations in the cwf21 domain prevent Prp8 from binding [2]. The structure of this domain has recently been solved which shows this domain to be composed of two alpha helices.
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
This domain includes the carboxyl terminal regions of Elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopt a ferredoxin-like fold.
This domain contains a P-loop motif, also found in several other families such as Pfam:PF00071, Pfam:PF00025 and Pfam:PF00063. Elongation factor Tu consists of three structural domains, this plus two C-terminal beta barrel domains.
This domain is found in Elongation Factor G. It shares a similar structure with domain V (Pfam:PF00679). Structural studies in drosophila indicate this is domain 3 [1].
Elongation factor Tu consists of three structural domains, this is the second domain. This domain adopts a beta barrel structure. This the second domain is involved in binding to charged tRNA [1]. This domain is also found in other proteins such as e ...
Elongation factor Tu consists of three structural domains, this is the second domain. This domain adopts a beta barrel structure. This the second domain is involved in binding to charged tRNA [1]. This domain is also found in other proteins such as elongation factor G and translation initiation factor IF-2. This domain is structurally related to Pfam:PF03143, and in fact has weak sequence matches to this domain.
This domain is found in elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopts a ribosomal protein S5 domain 2-like fold.
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) i ...
The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins [3]. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)
The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The mo ...
The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins (Swiss:P05455) have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteristic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins (Swiss:P05455) are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.
Members of this family include the DEAD and DEAH box helicases. Helicases are involved in unwinding nucleic acids. The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome ...
Members of this family include the DEAD and DEAH box helicases. Helicases are involved in unwinding nucleic acids. The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome biogenesis, nucleocytoplasmic transport, translation, RNA decay and organellar gene expression.
This domain is found in spliceosomal RNA helicase Brr2. Brr2 is required for the assembly of a catalytically active spliceosome on a messenger RNA precursor. The domain is found in the N-terminal region and is non-canonically PWI-like. The PWI-like d ...
This domain is found in spliceosomal RNA helicase Brr2. Brr2 is required for the assembly of a catalytically active spliceosome on a messenger RNA precursor. The domain is found in the N-terminal region and is non-canonically PWI-like. The PWI-like domain is thought to be involved in protein-protein interactions [1].