6J49

Grafting VLADV sequence into OspAsm1


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.181 
  • R-Value Observed: 0.183 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Grafting a short chameleon sequence from alpha B crystallin into a beta-sheet scaffold protein.

Hori, Y.Fujiwara, H.Fujiwara, W.Makabe, K.

(2019) Proteins 87: 416-424

  • DOI: https://doi.org/10.1002/prot.25663
  • Primary Citation of Related Structures:  
    6J47, 6J48, 6J49

  • PubMed Abstract: 

    Many protein and peptide sequences are self-assembled into β-sheet-rich fibrous structures called amyloids. Their atomic details provide insights into fundamental knowledge related to amyloid diseases. To study the detailed structure of the amyloid, we have developed a model system that mimics the self-assembling process of the amyloid within a water-soluble protein, termed peptide self-assembly mimic (PSAM). PSAM enables capturing of a peptide sequence within a water-soluble protein, thus making structural and energetics-related studies possible. In this work, we extend our PSAM approach to a naturally occurring chameleon sequence from αB crystallin. We chose "Val-Leu-Gly-Asp-Val (VLGDV)", a five amino-acid sequence, which forms a β-turn in the native structure and a β-barrel in the amyloid oligomer cylindrin, as a grafting sequence to the PSAM scaffold. The crystal structure revealed that the sequence grafting induced β-sheet bending at the grafted site. We further investigated the role of the central glycine residue and found that its role in the β-sheet bending is dependent on the neighboring residues. The ability of PSAM to observe the structural alterations induced by the grafted sequence provides an opportunity to evaluate the structural impact of a sequence from the peptide self-assembly.


  • Organizational Affiliation

    Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Outer surface protein AA [auth O]251Borreliella burgdorferi B31Mutation(s): 18 
Gene Names: ospABB_A15
UniProt
Find proteins for P0CL66 (Borreliella burgdorferi (strain ATCC 35210 / DSM 4680 / CIP 102532 / B31))
Explore P0CL66 
Go to UniProtKB:  P0CL66
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0CL66
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.181 
  • R-Value Observed: 0.183 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 33.229α = 90
b = 54.485β = 100.02
c = 66.489γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
HKL-2000data scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2019-03-06
    Type: Initial release
  • Version 1.1: 2019-04-17
    Changes: Data collection, Database references
  • Version 1.2: 2023-11-22
    Changes: Data collection, Database references, Refinement description