6H0A

Serum paraoxonase-1 by directed evolution with the L69G/H115W/H134R/F222S/T332S mutations


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.205 
  • R-Value Work: 0.188 
  • R-Value Observed: 0.189 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Enzyme Evolution: An Epistatic Ratchet versus a Smooth Reversible Transition.

Ben-David, M.Soskine, M.Dubovetskyi, A.Cherukuri, K.P.Dym, O.Sussman, J.L.Liao, Q.Szeler, K.Kamerlin, S.C.L.Tawfik, D.S.

(2020) Mol Biol Evol 37: 1133-1147

  • DOI: 10.1093/molbev/msz298
  • Primary Citation of Related Structures:  
    6G82, 6GMU, 6H0A

  • PubMed Abstract: 
  • Evolutionary trajectories are deemed largely irreversible. In a newly diverged protein, reversion of mutations that led to the functional switch typically results in loss of both the new and the ancestral functions. Nonetheless, evolutionary transitions where reversions are viable have also been described ...

    Evolutionary trajectories are deemed largely irreversible. In a newly diverged protein, reversion of mutations that led to the functional switch typically results in loss of both the new and the ancestral functions. Nonetheless, evolutionary transitions where reversions are viable have also been described. The structural and mechanistic causes of reversion compatibility versus incompatibility therefore remain unclear. We examined two laboratory evolution trajectories of mammalian paraoxonase-1, a lactonase with promiscuous organophosphate hydrolase (OPH) activity. Both trajectories began with the same active-site mutant, His115Trp, which lost the native lactonase activity and acquired higher OPH activity. A neo-functionalization trajectory amplified the promiscuous OPH activity, whereas the re-functionalization trajectory restored the native activity, thus generating a new lactonase that lacks His115. The His115 revertants of these trajectories indicated opposite trends. Revertants of the neo-functionalization trajectory lost both the evolved OPH and the original lactonase activity. Revertants of the trajectory that restored the original lactonase function were, however, fully active. Crystal structures and molecular simulations show that in the newly diverged OPH, the reverted His115 and other catalytic residues are displaced, thus causing loss of both the original and the new activity. In contrast, in the re-functionalization trajectory, reversion compatibility of the original lactonase activity derives from mechanistic versatility whereby multiple residues can fulfill the same task. This versatility enables unique sequence-reversible compositions that are inaccessible when the active site was repurposed toward a new function.


    Organizational Affiliation

    Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Serum Paraoxonase-1 by directed evolution with the L69G/H115W/H134R/F222S/T332S mutationsA355Homo sapiensMutation(s): 0 
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 5 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
LMT
Query on LMT

Download Ideal Coordinates CCD File 
A
DODECYL-BETA-D-MALTOSIDE
C24 H46 O11
NLEBIOOXCVAHBD-QKMCSOCLSA-N
 Ligand Interaction
B3P
Query on B3P

Download Ideal Coordinates CCD File 
A
2-[3-(2-HYDROXY-1,1-DIHYDROXYMETHYL-ETHYLAMINO)-PROPYLAMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL
C11 H26 N2 O6
HHKZCCWKTZRCCL-UHFFFAOYSA-N
 Ligand Interaction
PEG
Query on PEG

Download Ideal Coordinates CCD File 
A
DI(HYDROXYETHYL)ETHER
C4 H10 O3
MTHSVFCYNBDYFN-UHFFFAOYSA-N
 Ligand Interaction
BR
Query on BR

Download Ideal Coordinates CCD File 
A
BROMIDE ION
Br
CPELXLSAUQHCOX-UHFFFAOYSA-M
 Ligand Interaction
CA
Query on CA

Download Ideal Coordinates CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.205 
  • R-Value Work: 0.188 
  • R-Value Observed: 0.189 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 94.457α = 90
b = 94.457β = 90
c = 141.604γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2019-07-17
    Type: Initial release
  • Version 1.1: 2020-02-05
    Changes: Database references
  • Version 1.2: 2020-04-08
    Changes: Database references