5XJK

NMR Structure and Localization of a Large Fragment of the SARS-CoV Fusion Protein: Implications in Viral Cell Fusion


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.

Mahajan, M.Chatterjee, D.Bhuvaneswari, K.Pillay, S.Bhattacharjya, S.

(2017) Biochim Biophys Acta 1860: 407-415

  • DOI: https://doi.org/10.1016/j.bbamem.2017.10.002
  • Primary Citation of Related Structures:  
    5XJK

  • PubMed Abstract: 

    The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15 N{ 1 H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV.


  • Organizational Affiliation

    School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Spike protein S265Severe acute respiratory syndrome-related coronavirusMutation(s): 1 
Gene Names: S2
Membrane Entity: Yes 
UniProt
Find proteins for P59594 (Severe acute respiratory syndrome coronavirus)
Explore P59594 
Go to UniProtKB:  P59594
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP59594
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2017-09-06
    Type: Initial release
  • Version 1.1: 2017-12-06
    Changes: Database references
  • Version 1.2: 2017-12-13
    Changes: Database references
  • Version 1.3: 2023-06-14
    Changes: Data collection, Database references, Other