2N1G

Structure of C-terminal domain of human polymerase Rev1 in complex with PolD3 RIR-motif


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Pol zeta Suggests a Mechanism of Polymerase Exchange upon Rev1/Pol zeta-Dependent Translesion Synthesis.

Pustovalova, Y.Magalhaes, M.T.D'Souza, S.Rizzo, A.A.Korza, G.Walker, G.C.Korzhnev, D.M.

(2016) Biochemistry 55: 2043-2053

  • DOI: 10.1021/acs.biochem.5b01282
  • Primary Citation of Related Structures:  
    2N1G

  • PubMed Abstract: 
  • Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS ...

    Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι, or Polκ, inserts a nucleotide across a DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polζ (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polζ and Rev1-interacting regions (RIRs) from Polη, Polι, or Polκ. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polζ whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of "inserter" to "extender" DNA polymerase switch upon Rev1/Polζ-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the "inserter" Polη, Polι, or Polκ from its complex with Rev1, and (ii) facilitates assembly of the four-subunit "extender" Polζ through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits.


    Organizational Affiliation

    Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
DNA repair protein REV1 A94Homo sapiensMutation(s): 0 
Gene Names: REV1REV1L
EC: 2.7.7
Find proteins for Q9UBZ9 (Homo sapiens)
Explore Q9UBZ9 
Go to UniProtKB:  Q9UBZ9
NIH Common Fund Data Resources
PHAROS:  Q9UBZ9
Protein Feature View
Expand
  • Reference Sequence
  • Find similar proteins by:  Sequence   |   Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
DNA polymerase delta subunit 3 B16Homo sapiensMutation(s): 0 
Gene Names: KIAA0039POLD3
Find proteins for Q15054 (Homo sapiens)
Explore Q15054 
Go to UniProtKB:  Q15054
NIH Common Fund Data Resources
PHAROS:  Q15054
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 
  • OLDERADO: 2N1G Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2016-04-13
    Type: Initial release
  • Version 1.1: 2016-04-20
    Changes: Database references