1K4Z

C-terminal Domain of Cyclase Associated Protein


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.242 
  • R-Value Work: 0.207 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Crystal structure of the actin binding domain of the cyclase-associated protein

Dodatko, T.Fedorov, A.A.Grynberg, M.Patskovsky, Y.Rozwarski, D.A.Jaroszewski, L.Aronoff-Spencer, E.Kondraskina, E.Irving, T.Godzik, A.Almo, S.C.

(2004) Biochemistry 43: 10628-10641

  • DOI: 10.1021/bi049071r
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Cyclase-associated protein (CAP or Srv2p) is a modular actin monomer binding protein that directly regulates filament dynamics and has been implicated in a number of complex developmental and morphological processes, including mRNA localization and t ...

    Cyclase-associated protein (CAP or Srv2p) is a modular actin monomer binding protein that directly regulates filament dynamics and has been implicated in a number of complex developmental and morphological processes, including mRNA localization and the establishment of cell polarity. The crystal structure of the C-terminal dimerization and actin monomer binding domain (C-CAP) reveals a highly unusual dimer, composed of monomers possessing six coils of right-handed beta-helix flanked by antiparallel beta-strands. Domain swapping, involving the last two strands of each monomer, results in the formation of an extended dimer with an extensive interface. This structural and biochemical characterization provides new insights into the organization and potential mechanistic properties of the multiprotein assemblies that integrate dynamic actin processes into the overall physiology of the cell. An unanticipated finding is that the unique tertiary structure of the C-CAP monomer provides a structural model for a wide range of molecules, including RP2 and cofactor C, proteins involved in X-linked retinitis pigmentosa and tubulin maturation, respectively, as well as several uncharacterized proteins that exhibit very diverse domain organizations. Thus, the unusual right-handed beta-helical fold present in C-CAP appears to support a wide range of biological functions.


    Related Citations: 
    • Two Separate Functions Are Encoded by the Carboxyl-terminal Domains of the Yeast Cyclase-associated Protein and Its Mammalian Homologs. Dimerization and Actin Binding.
      Zelicof, A.,Protopopov, V.,David, D.,Lin, X.Y.,Lusgarten, V.,Gerst, J.E.
      (1996) J.Biol.Chem. 271: 18243


    Organizational Affiliation

    Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Adenylyl Cyclase-Associated Protein
A, B
159Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 0 
Gene Names: SRV2 (CAP1)
Find proteins for P17555 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  P17555
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.242 
  • R-Value Work: 0.207 
  • Space Group: I 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 56.520α = 90.00
b = 86.810β = 90.00
c = 160.210γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
SOLVEphasing
SCALEPACKdata scaling
CNSrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2002-03-13
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Derived calculations, Version format compliance