1GY1

Crystal structures of Ser86Asp and Met148Leu Rusticyanin


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.190 
  • R-Value Work: 0.166 
  • R-Value Observed: 0.167 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal Structures of the met148Leu and Ser86Asp Mutants of Rusticyanin from Thiobacillus Ferrooxidans: Insights Into the Structural Relationship with the Cupredoxins and the Multi Copper Proteins

Kanbi, L.D.Antonyuk, S.Hough, M.A.Hall, J.Dodd, F.Hasnain, S.

(2002) J Mol Biol 320: 263

  • DOI: https://doi.org/10.1016/S0022-2836(02)00443-6
  • Primary Citation of Related Structures:  
    1GY1, 1GY2

  • PubMed Abstract: 

    The crystal structures of the Met148Leu and Ser86Asp mutants of rusticyanin are presented at 1.82 and 1.65 A resolution, respectively. Both of these structures have two molecules in the asymmetric unit compared to the one present in the crystal form of the native protein. This provides an opportunity to investigate intramolecular electron transfer pathways in rusticyanin. The redox potential of the Met148Leu mutant ( approximately 800 mV) is elevated compared to that of the native protein ( approximately 670 mV at pH 3.2) while that of the Ser86Asp mutant ( approximately 623 mV at pH 3.2) is decreased. The effect of the Ser86Asp mutation on the hydrogen bonding near the type 1 Cu site is discussed and hence its role in determining acid stability is examined. The type 1 Cu site of Met148Leu mimics the structural and biochemical characteristics of those found in domain II of ceruloplasmin and fungal laccase. Moreover, the native rusticyanin's cupredoxin core and the type 1 Cu site closely resemble those found in ascorbate oxidase and nitrite reductase. Structure based phylogenetic trees have been re-examined in view of the additional structural data on rusticyanin and fungal laccase. We confirm that rusticyanin is in the same class as nitrite reductase domain 2, laccase domain 3 and ceruloplasmin domains 2, 4 and 6.


  • Organizational Affiliation

    Faculty of Applied Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
RUSTICYANIN
A, B
155Acidithiobacillus ferrooxidansMutation(s): 1 
UniProt
Find proteins for P0C918 (Acidithiobacillus ferridurans)
Explore P0C918 
Go to UniProtKB:  P0C918
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0C918
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CU
Query on CU

Download Ideal Coordinates CCD File 
C [auth A],
D [auth B]
COPPER (II) ION
Cu
JPVYNHNXODAKFH-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.190 
  • R-Value Work: 0.166 
  • R-Value Observed: 0.167 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.098α = 90
b = 61.408β = 96.13
c = 53.346γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2002-05-23
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description