1FSY

AMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH INHIBITOR CLOXACILLINBORONIC ACID


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.196 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases.

Caselli, E.Powers, R.A.Blasczcak, L.C.Wu, C.Y.Prati, F.Shoichet, B.K.

(2001) Chem Biol 8: 17-31

  • DOI: https://doi.org/10.1016/s1074-5521(00)00052-1
  • Primary Citation of Related Structures:  
    1FSW, 1FSY

  • PubMed Abstract: 

    Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these beta-lactams, most often through bacterial expression of beta-lactamases, threatens public health. To understand how beta-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because beta-lactams form covalent adducts with beta-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of beta-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well as four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine beta-lactamases. Therefore, binding energies can be calculated directly from K(i) values. The K(i) values measured span four orders of magnitude against the Group I beta-lactamase AmpC and three orders of magnitude against the Group II beta-lactamase TEM-1. The acylglycineboronic acids have K(i) values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of beta-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of beta-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to beta-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 A and 1.75 A resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between beta-lactam side chains and beta-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in beta-lactam inhibitors or beta-lactam substrates of serine beta-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.


  • Organizational Affiliation

    Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL 60611, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CEPHALOSPORINASE
A, B
358Escherichia coli K-12Mutation(s): 0 
EC: 3.5.2.6
UniProt
Find proteins for P00811 (Escherichia coli (strain K12))
Explore P00811 
Go to UniProtKB:  P00811
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00811
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
105 PDBBind:  1FSY Ki: 150 (nM) from 1 assay(s)
BindingDB:  1FSY Ki: 150 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.196 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 118.36α = 90
b = 77.57β = 116.18
c = 97.46γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-03-14
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Source and taxonomy, Version format compliance