1DRO

NMR STRUCTURE OF THE CYTOSKELETON/SIGNAL TRANSDUCTION PROTEIN


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 15 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Solution structure of the pleckstrin homology domain of Drosophila beta-spectrin.

Zhang, P.Talluri, S.Deng, H.Branton, D.Wagner, G.

(1995) Structure 3: 1185-1195

  • DOI: https://doi.org/10.1016/s0969-2126(01)00254-4
  • Primary Citation of Related Structures:  
    1DRO

  • PubMed Abstract: 

    The pleckstrin homology (PH) domain, which is approximately 100 amino acids long, has been found in about 70 proteins involved in signal transduction and cytoskeletal function, a frequency comparable to SH2 (src homology 2) and SH3 domains. PH domains have been shown to bind the beta gamma-subunits of G-proteins and phosphatidylinositol 4,5-bisphosphate (PIP2). It is conceivable that the PH domain of beta-spectrin plays a part in the association of spectrin with the plasma membrane of cells. We have solved the solution structure of the 122-residue PH domain of Drosophila beta-spectrin. The overall fold consists of two antiparallel beta-sheets packing against each other at an angle of approximately 60 degrees to form a beta-sandwich, a two-turn alpha-helix unique to spectrin PH domains, and a four-turn C-terminal alpha-helix. One of the major insertions in beta-spectrin PH domains forms a long, basic surface loop and appears to undergo slow conformational exchange in solution. This loop shows big spectral changes upon addition of D-myo-inositol 1,4,5-trisphosphate (IP3). We propose that the groove at the outer surface of the second beta-sheet is an important site of association with other proteins. This site and the possible lipid-binding site can serve to localize the spectrin network under the plasma membrane. More generally, it has to be considered that the common fold observed for the PH domain structures solved so far does not necessarily mean that all PH domains have similar functions. In fact, the residues constituting potential binding sites for ligands or other proteins are only slightly conserved between different PH domains.


  • Organizational Affiliation

    Committee on Higher Degrees in Biophysics, Harvard University, Boston, MA 02115, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
BETA-SPECTRIN122Drosophila melanogasterMutation(s): 3 
UniProt
Find proteins for Q00963 (Drosophila melanogaster)
Explore Q00963 
Go to UniProtKB:  Q00963
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ00963
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 15 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1996-04-03
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-11-03
    Changes: Database references, Derived calculations, Other