1BL8

POTASSIUM CHANNEL (KCSA) FROM STREPTOMYCES LIVIDANS


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.2 Å
  • R-Value Free: 0.290 
  • R-Value Work: 0.280 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

The structure of the potassium channel: molecular basis of K+ conduction and selectivity.

Doyle, D.A.Morais Cabral, J.Pfuetzner, R.A.Kuo, A.Gulbis, J.M.Cohen, S.L.Chait, B.T.MacKinnon, R.

(1998) Science 280: 69-77


  • PubMed Abstract: 
  • The potassium channel from Streptomyces lividans is an integral membrane protein with sequence similarity to all known K+ channels, particularly in the pore region. X-ray analysis with data to 3.2 angstroms reveals that four identical subunits create ...

    The potassium channel from Streptomyces lividans is an integral membrane protein with sequence similarity to all known K+ channels, particularly in the pore region. X-ray analysis with data to 3.2 angstroms reveals that four identical subunits create an inverted teepee, or cone, cradling the selectivity filter of the pore in its outer end. The narrow selectivity filter is only 12 angstroms long, whereas the remainder of the pore is wider and lined with hydrophobic amino acids. A large water-filled cavity and helix dipoles are positioned so as to overcome electrostatic destabilization of an ion in the pore at the center of the bilayer. Main chain carbonyl oxygen atoms from the K+ channel signature sequence line the selectivity filter, which is held open by structural constraints to coordinate K+ ions but not smaller Na+ ions. The selectivity filter contains two K+ ions about 7.5 angstroms apart. This configuration promotes ion conduction by exploiting electrostatic repulsive forces to overcome attractive forces between K+ ions and the selectivity filter. The architecture of the pore establishes the physical principles underlying selective K+ conduction.


    Organizational Affiliation

    Laboratory of Molecular Neurobiology and Biophysics and the Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN (POTASSIUM CHANNEL PROTEIN)
A, B, C, D
97Streptomyces lividansMutations: C68L
Gene Names: kcsA (skc1)
Membrane protein
mpstruct
Group: 
TRANSMEMBRANE PROTEINS: ALPHA-HELICAL
Sub Group: 
Channels: Potassium, Sodium, & Proton Ion-Selective
Protein: 
KcsA Potassium channel, H+ gated
Find proteins for P0A334 (Streptomyces lividans)
Go to UniProtKB:  P0A334
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
K
Query on K

Download SDF File 
Download CCD File 
A
POTASSIUM ION
K
NPYPAHLBTDXSSS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.2 Å
  • R-Value Free: 0.290 
  • R-Value Work: 0.280 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 128.780α = 90.00
b = 68.930β = 124.63
c = 112.040γ = 90.00
Software Package:
Software NamePurpose
SHELXL-97phasing
CCP4model building
SHELXL-97model building
CCP4phasing
SCALEPACKdata scaling
DENZOdata reduction
X-PLORrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1998-07-29
    Type: Initial release
  • Version 1.1: 2007-10-16
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Derived calculations, Version format compliance
  • Version 1.3: 2017-10-04
    Type: Refinement description