1BBH

ATOMIC STRUCTURE OF A CYTOCHROME C' WITH AN UNUSUAL LIGAND-CONTROLLED DIMER DISSOCIATION AT 1.8 ANGSTROMS RESOLUTION


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Work: 0.185 
  • R-Value Observed: 0.185 

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

Atomic structure of a cytochrome c' with an unusual ligand-controlled dimer dissociation at 1.8 A resolution.

Ren, Z.Meyer, T.McRee, D.E.

(1993) J Mol Biol 234: 433-445

  • DOI: https://doi.org/10.1006/jmbi.1993.1597
  • Primary Citation of Related Structures:  
    1BBH

  • PubMed Abstract: 

    The crystallographic structure of cytochrome c' from the purple phototrophic bacterium Chromatium vinosum (CVCP) has been determined at 1.8 A resolution using multiple isomorphous replacement. The molecule is a dimer, with each 131-residue chain folding as a four-helical bundle incorporating a covalently bound heme group at the core. This structure is the third of the ubiquitous cytochromes c' to be solved and is similar to the known structures of cytochrome c' from R. molischianum (RMCP) and R. rubrum (RRCP). CVCP is unique in exhibiting ligand-controlled dimer dissociation while RMCP and RRCP do not. The Tyr16 side-chain, which replaced Met16 in RMCP and Leu14 in RRCP, is parallel to the heme plane and located directly above the sixth ligand site of the heme Fe. Any ligand binding to this site, such as CO or CN-, must move the Tyr16 side-chain, which would be expected to cause other conformational changes of helix A, which contributes to the dimer interface, and consequently disrupting the dimer. Thus, the crystallographic structure of CVCP suggests a mechanism for dimer dissociation upon ligand binding. The dimer interface specificity is due to a lock and key shape complementarity of hydrophobic residues and not to any charge complementarity or cross-interface hydrogen bonds as is common in other protein-protein interfaces. The co-ordinates have been deposited in the Brookhaven Data Bank (entry P1BBH).


  • Organizational Affiliation

    Department of Biochemistry, University of Arizona, Tucson 85721.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CYTOCHROME C'
A, B
131Allochromatium vinosumMutation(s): 0 
UniProt
Find proteins for P00154 (Allochromatium vinosum (strain ATCC 17899 / DSM 180 / NBRC 103801 / NCIMB 10441 / D))
Explore P00154 
Go to UniProtKB:  P00154
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00154
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
HEC
Query on HEC

Download Ideal Coordinates CCD File 
C [auth A],
D [auth B]
HEME C
C34 H34 Fe N4 O4
HXQIYSLZKNYNMH-LJNAALQVSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Work: 0.185 
  • R-Value Observed: 0.185 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 49.2α = 90
b = 56.7β = 90
c = 98.8γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1994-01-31
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-11-29
    Changes: Advisory, Derived calculations, Other
  • Version 2.0: 2021-03-03
    Changes: Advisory, Atomic model, Data collection, Derived calculations, Non-polymer description, Structure summary