Help  

Alpha-like toxin BmK M1

UniProtKB accession:  P45697
Grouped By:  Matching UniProtKB accession
Group Content:  
Go to UniProtKB:  P45697
UniProtKB description:  Alpha toxins bind voltage-independently at site-3 of sodium channels (Nav) and inhibit the inactivation of the activated channels thereby blocking neuronal transmission. This toxin is active against both mammals and insects, and is classified as an alpha-like toxin. It is active on Nav1.2/SCN2A (EC(50)=139-252 nM), Nav1.3/SCN3A (EC(50)=565 nM), Nav1.4/SCN4A and Nav1.5/SCN5A (EC(50)=195-500 nM), Nav1.6/SCN8A (EC(50)=214 nM), and drosophila DmNav1 (EC(50)=30 nM) (PubMed:11322948, PubMed:12705833, PubMed:15677695, PubMed:19162162, PubMed:20678086). In mNav1.6/SCN8A, the toxin induces a large increase in both transient and persistent currents, which correlates with a prominent reduction in the fast component of inactivating current (PubMed:20678086). In rNav1.2/SCN2A and rNav1.3/SCN3A, toxin-increased currents is much smaller (PubMed:19162162, PubMed:20678086). Moreover, the toxin only accelerates the slow inactivation development and delay recovery of mNav1.6/SCN8A through binding to the channel in the open state (PubMed:20678086). Is 6-fold more toxic than BmK-M2. In vivo, intrahippocampal injection into rat induces epileptiform responses (PubMed:16229835). In addition, intraplantar injection into rat induces spontaneous nociception and hyperalgesia (PubMed:14554105).
Group Members:
Release Date:


Structure Features


Sequence Features


Experimental Features


Organisms


Protein Domains


Function