9PL1 | pdb_00009pl1

Structure of metastable folding intermediate of V17A/V26A ubiquitin derived from pressure-jump NMR data


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 10000 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structure of a transient protein-folding intermediate by pressure-jump NMR spectroscopy.

Masoumzadeh, E.Courtney, J.M.Charlier, C.Ying, J.Anfinrud, P.Bax, A.

(2025) Proc Natl Acad Sci U S A 122: e2519493122-e2519493122

  • DOI: https://doi.org/10.1073/pnas.2519493122
  • Primary Citation of Related Structures:  
    9PL1

  • PubMed Abstract: 

    Protein folding, as commonly portrayed, involves exploration of a rough, high-dimensional landscape, ending with a final descent into a low-energy folded state. During that journey, the protein may visit shallow basins corresponding to metastable structures, potentially of biological importance. Structural characterization of transiently populated metastable states is challenging due to their low population, which limits traditional NMR, and also makes crystallization for X-ray diffraction difficult without stabilizing mutations, covalent modifications, or the addition of antibodies. Here, we report the structural characterization of the on-pathway folding intermediate of a pressure-sensitized ubiquitin mutant. The obtained non-native β-sheet registry was previously shown to be necessary in the PINK1 mitophagy pathway. We used fast pressure jumps to repeatedly initiate folding and advanced NMR measurements to probe the evolving ensemble of protein conformations. The results reported here demonstrate that the non-native β-sheet hydrogen bond registry can act as a metastable trap during protein folding. This work provides a template for future investigation of metastable conformations and protein folding with rich structural detail.


  • Organizational Affiliation
    • Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520.

Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Ubiquitin76Homo sapiensMutation(s): 2 
Gene Names: UBA52UBCEP2
UniProt & NIH Common Fund Data Resources
Find proteins for P0CG48 (Homo sapiens)
Explore P0CG48 
Go to UniProtKB:  P0CG48
PHAROS:  P0CG48
GTEx:  ENSG00000150991 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0CG48
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 10000 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Disease (NIH/NIDDK)United States--

Revision History  (Full details and data files)

  • Version 1.0: 2025-08-06
    Type: Initial release
  • Version 1.1: 2025-10-22
    Changes: Database references