8TEO

Shaker in low K+ (4mM K+)


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 2.39 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.0 of the entry. See complete history


Literature

Eukaryotic Kv channel Shaker inactivates through selectivity filter dilation rather than collapse.

Stix, R.Tan, X.F.Bae, C.Fernandez-Marino, A.I.Swartz, K.J.Faraldo-Gomez, J.D.

(2023) Sci Adv 9: eadj5539-eadj5539

  • DOI: https://doi.org/10.1126/sciadv.adj5539
  • Primary Citation of Related Structures:  
    8TEO

  • PubMed Abstract: 

    Eukaryotic voltage-gated K + channels have been extensively studied, but the structural bases for some of their most salient functional features remain to be established. C-type inactivation, for example, is an auto-inhibitory mechanism that confers temporal resolution to their signal-firing activity. In a recent breakthrough, studies of a mutant of Shaker that is prone to inactivate indicated that this process entails a dilation of the selectivity filter, the narrowest part of the ion conduction pathway. Here, we report an atomic-resolution cryo-electron microscopy structure that demonstrates that the wild-type channel can also adopt this dilated state. All-atom simulations corroborate this conformation is congruent with the electrophysiological characteristics of the C-type inactivated state, namely, residual K + conductance and altered ion specificity, and help rationalize why inactivation is accelerated or impeded by certain mutations. In summary, this study establishes the molecular basis for an important self-regulatory mechanism in eukaryotic K + channels, laying a solid foundation for further studies.


  • Organizational Affiliation

    Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Potassium voltage-gated channel protein Shaker
A, B, C, D
658Drosophila melanogasterMutation(s): 0 
Gene Names: ShmnsCG12348
Membrane Entity: Yes 
UniProt
Find proteins for P08510 (Drosophila melanogaster)
Explore P08510 
Go to UniProtKB:  P08510
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP08510
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
POV
Query on POV

Download Ideal Coordinates CCD File 
AA [auth C]
BA [auth C]
CA [auth C]
DA [auth C]
E [auth A]
AA [auth C],
BA [auth C],
CA [auth C],
DA [auth C],
E [auth A],
EA [auth D],
F [auth A],
FA [auth D],
G [auth A],
GA [auth D],
H [auth A],
HA [auth D],
I [auth A],
IA [auth D],
J [auth A],
JA [auth D],
K [auth A],
KA [auth D],
L [auth A],
LA [auth D],
O [auth B],
P [auth B],
Q [auth B],
R [auth B],
S [auth B],
T [auth B],
U [auth B],
V [auth B],
W [auth C],
X [auth C],
Y [auth C],
Z [auth C]
(2S)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propyl 2-(trimethylammonio)ethyl phosphate
C42 H82 N O8 P
WTJKGGKOPKCXLL-PFDVCBLKSA-N
K
Query on K

Download Ideal Coordinates CCD File 
M [auth A],
N [auth A]
POTASSIUM ION
K
NPYPAHLBTDXSSS-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 2.39 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 
EM Software:
TaskSoftware PackageVersion
MODEL REFINEMENTPHENIX1.19.1_4122:

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)United States--

Revision History  (Full details and data files)

  • Version 1.0: 2023-12-20
    Type: Initial release