7TQM

The crystal structure of D251N CYP199A4 bound to 4-methylthiobenzoic acid


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.44 Å
  • R-Value Free: 0.203 
  • R-Value Work: 0.178 
  • R-Value Observed: 0.179 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.1 of the entry. See complete history


Literature

Investigating the Active Oxidants Involved in Cytochrome P450 Catalyzed Sulfoxidation Reactions.

Podgorski, M.N.Coleman, T.Churchman, L.R.Bruning, J.B.De Voss, J.J.Bell, S.G.

(2022) Chemistry 28: e202202428-e202202428

  • DOI: https://doi.org/10.1002/chem.202202428
  • Primary Citation of Related Structures:  
    7TP5, 7TP6, 7TQM, 8DYB

  • PubMed Abstract: 

    Cytochrome P450 (CYP) heme-thiolate monooxygenases catalyze the hydroxylation of the C-H bonds of organic molecules. This reaction is initiated by a ferryl-oxo heme radical cation (Cpd I). These enzymes can also catalyze sulfoxidation reactions and the ferric-hydroperoxy complex (Cpd 0) and the Fe(III)-H 2 O 2 complex have been proposed as alternative oxidants for this transformation. To investigate this, the oxidation of 4-alkylthiobenzoic acids and 4-methoxybenzoic acid by the CYP199A4 enzyme from Rhodopseudomonas palustris HaA2 was compared using both monooxygenase and peroxygenase pathways. By examining mutants at the mechanistically important, conserved acid alcohol-pair (D251N, T252A and T252E) the relative amounts of the reactive intermediates that would form in these reactions were disturbed. Substrate binding and X-ray crystal structures helped to understand changes in the activity and enabled an attempt to evaluate whether multiple oxidants can participate in these reactions. In peroxygenase reactions the T252E mutant had higher activity towards sulfoxidation than O-demethylation but in the monooxygenase reactions with the WT enzyme the activity of both reactions was similar. The peroxygenase activity of the T252A mutant was greater for sulfoxidation reactions than the WT enzyme, which is the reverse of the activity changes observed for O-demethylation. The monooxygenase activity and coupling efficiency of sulfoxidation and oxidative demethylation were reduced by similar degrees with the T252A mutant. These observations infer that while Cpd I is required for O-dealkylation, another oxidant may contribute to sulfoxidation. Based on the activity of the CYP199A4 mutants it is proposed that this is the Fe(III)-H 2 O 2 complex which would be more abundant in the peroxide-driven reactions.


  • Organizational Affiliation

    Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Cytochrome P450393Rhodopseudomonas palustris HaA2Mutation(s): 1 
Gene Names: RPB_3613
UniProt
Find proteins for Q2IU02 (Rhodopseudomonas palustris (strain HaA2))
Explore Q2IU02 
Go to UniProtKB:  Q2IU02
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ2IU02
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.44 Å
  • R-Value Free: 0.203 
  • R-Value Work: 0.178 
  • R-Value Observed: 0.179 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 44.537α = 90
b = 51.362β = 92.32
c = 79.054γ = 90
Software Package:
Software NamePurpose
XDSdata reduction
Aimlessdata scaling
PHASERphasing
PHENIXrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Australian Research Council (ARC)Australia--

Revision History  (Full details and data files)

  • Version 1.0: 2023-01-04
    Type: Initial release
  • Version 1.1: 2023-10-25
    Changes: Data collection, Refinement description