7MKP

Escherichia coli RNA polymerase core enzyme


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.41 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli.

Qayyum, M.Z.Molodtsov, V.Renda, A.Murakami, K.S.

(2021) J Biol Chem 297: 101404-101404

  • DOI: https://doi.org/10.1016/j.jbc.2021.101404
  • Primary Citation of Related Structures:  
    7MKN, 7MKO, 7MKP, 7MKQ

  • PubMed Abstract: 

    After transcription termination, cellular RNA polymerases (RNAPs) are occasionally trapped on DNA, impounded in an undefined post-termination complex (PTC), limiting the free RNAP pool and subsequently leading to inefficient transcription. In Escherichia coli, a Swi2/Snf2 family of ATPase called RapA is known to be involved in countering such inefficiency through RNAP recycling; however, the precise mechanism of this recycling is unclear. To better understand its mechanism, here we determined the structures of two sets of E. coli RapA-RNAP complexes, along with the RNAP core enzyme and the elongation complex, using cryo-EM. These structures revealed the large conformational changes of RNAP and RapA upon their association that has been implicated in the hindrance of PTC formation. Our results along with DNA-binding assays reveal that although RapA binds RNAP away from the DNA-binding main channel, its binding can allosterically close the RNAP clamp, thereby preventing its nonspecific DNA binding and PTC formation. Taken together, we propose that RapA acts as a guardian of RNAP by which RapA prevents nonspecific DNA binding of RNAP without affecting the binding of promoter DNA recognition σ factor, thereby enhancing RNAP recycling.


  • Organizational Affiliation

    Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
DNA-directed RNA polymerase subunit alpha
A, B
237Escherichia coli K-12Mutation(s): 0 
Gene Names: rpoAFAZ83_23195
EC: 2.7.7.6
UniProt
Find proteins for P0A7Z4 (Escherichia coli (strain K12))
Explore P0A7Z4 
Go to UniProtKB:  P0A7Z4
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A7Z4
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
DNA-directed RNA polymerase subunit beta1,340Escherichia coli K-12Mutation(s): 0 
Gene Names: rpoBFAZ83_22375
EC: 2.7.7.6
UniProt
Find proteins for P0A8V2 (Escherichia coli (strain K12))
Explore P0A8V2 
Go to UniProtKB:  P0A8V2
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A8V2
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
DNA-directed RNA polymerase subunit beta'1,363Escherichia coli K-12Mutation(s): 0 
Gene Names: rpoCFAZ83_22370
EC: 2.7.7.6
UniProt
Find proteins for P0A8T7 (Escherichia coli (strain K12))
Explore P0A8T7 
Go to UniProtKB:  P0A8T7
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A8T7
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 4
MoleculeChains Sequence LengthOrganismDetailsImage
DNA-directed RNA polymerase subunit omega91Escherichia coli K-12Mutation(s): 0 
Gene Names: rpoZb3649JW3624
EC: 2.7.7.6
UniProt
Find proteins for P0A800 (Escherichia coli (strain K12))
Explore P0A800 
Go to UniProtKB:  P0A800
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A800
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.41 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)United StatesR01 GM087350
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)United StatesR35 GM131860

Revision History  (Full details and data files)

  • Version 1.0: 2021-06-23
    Type: Initial release
  • Version 1.1: 2021-12-15
    Changes: Database references
  • Version 1.2: 2021-12-22
    Changes: Database references