7FD5

A complete three-dimensional structure of the Lon protease translocating a protein substrate (conformation 2)


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 2.40 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.0 of the entry. See complete history


Literature

Complete three-dimensional structures of the Lon protease translocating a protein substrate.

Li, S.Hsieh, K.Y.Kuo, C.I.Lee, S.H.Pintilie, G.D.Zhang, K.Chang, C.I.

(2021) Sci Adv 7: eabj7835-eabj7835

  • DOI: https://doi.org/10.1126/sciadv.abj7835
  • Primary Citation of Related Structures:  
    7FD4, 7FD5

  • PubMed Abstract: 

    Lon is an evolutionarily conserved proteolytic machine carrying out a wide spectrum of biological activities by degrading misfolded damaged proteins and specific cellular substrates. Lon contains a large N-terminal domain and forms a hexameric core of fused adenosine triphosphatase and protease domains. Here, we report two complete structures of Lon engaging a substrate, determined by cryo–electron microscopy to 2.4-angstrom resolution. These structures show a multilayered architecture featuring a tensegrity triangle complex, uniquely constructed by six long N-terminal helices. The interlocked helix triangle is assembled on the top of the hexameric core to spread a web of six globular substrate-binding domains. It serves as a multipurpose platform that controls the access of substrates to the AAA+ ring, provides a ruler-based mechanism for substrate selection, and acts as a pulley device to facilitate unfolding of the translocated substrate. This work provides a complete framework for understanding the structural mechanisms of Lon.


  • Organizational Affiliation

    MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Lon protease793Meiothermus taiwanensisMutation(s): 0 
Gene Names: lonA1lon
EC: 3.4.21.53
UniProt
Find proteins for A0A059VAZ3 (Meiothermus taiwanensis)
Explore A0A059VAZ3 
Go to UniProtKB:  A0A059VAZ3
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupA0A059VAZ3
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Alpha-S1-caseinG [auth S]22Bos taurusMutation(s): 0 
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
AGS (Subject of Investigation/LOI)
Query on AGS

Download Ideal Coordinates CCD File 
J [auth B],
N [auth C],
R [auth A]
PHOSPHOTHIOPHOSPHORIC ACID-ADENYLATE ESTER
C10 H16 N5 O12 P3 S
NLTUCYMLOPLUHL-KQYNXXCUSA-N
ADP (Subject of Investigation/LOI)
Query on ADP

Download Ideal Coordinates CCD File 
H [auth F],
L [auth D],
P [auth E]
ADENOSINE-5'-DIPHOSPHATE
C10 H15 N5 O10 P2
XTWYTFMLZFPYCI-KQYNXXCUSA-N
4KZ (Subject of Investigation/LOI)
Query on 4KZ

Download Ideal Coordinates CCD File 
I [auth F]
K [auth B]
M [auth D]
O [auth C]
Q [auth E]
I [auth F],
K [auth B],
M [auth D],
O [auth C],
Q [auth E],
S [auth A]
N-[(1R)-1-(dihydroxyboranyl)-2-phenylethyl]-Nalpha-(pyrazin-2-ylcarbonyl)-L-phenylalaninamide
C22 H23 B N4 O4
ILENEQWIGPQYCQ-ICSRJNTNSA-N
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 2.40 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Ministry of Science and Technology (MoST, Taiwan)Taiwan108-2320-B-001-011-MY3

Revision History  (Full details and data files)

  • Version 1.0: 2021-11-03
    Type: Initial release