7E25

Crystal structure of human FABP7 complexed with palmitic acid


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.198 
  • R-Value Work: 0.173 
  • R-Value Observed: 0.175 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.1 of the entry. See complete history


Literature

Crystal structure of human brain-type fatty acid-binding protein FABP7 complexed with palmitic acid.

Nam, K.H.

(2021) Acta Crystallogr D Struct Biol 77: 954-965

  • DOI: https://doi.org/10.1107/S2059798321005763
  • Primary Citation of Related Structures:  
    7E25

  • PubMed Abstract: 

    The brain-type fatty acid-binding protein FABP7, which is expressed in astrocytes and neural progenitors, is a member of the intracellular lipid-binding protein family. This protein is not only involved in various cellular functions such as metabolism, inflammation and energy homeostasis, but also in diseases such as cognitive disorders and tumors. Structures of unsaturated fatty acids, such as oleic acid (OA) and docosahexaenoic acid (DHA), bound to FABP7 have been elucidated; however, structures of saturated fatty acids bound to FABP7 remain unknown. To better understand fatty acid recognition, here the crystal structure of human brain-type fatty acid-binding protein FABP7 complexed with palmitic acid (PA), a saturated fatty acid, is reported at a resolution of 1.6 Å. The PA bound to the fatty acid-binding pocket of FABP7 assumed a U-shaped conformation. The carboxylate moiety of PA interacted with Tyr129, Arg127 and, via a water bridge, with Arg107 and Thr54, whereas its aliphatic chain was stabilized by hydrophobic interactions with Met21, Leu24, Thr30, Thr37, Pro39, Phe58 and Asp77. Structural comparison showed that PA, OA and DHA exhibited unique binding conformations in the fatty acid-binding pocket, stabilized by distinct amino-acid interactions. The binding of PA to FABP7 exhibits a unique binding conformation when compared with other human FABPs (FABP3-FABP5 and FABP8) expressed in other tissues. Based on the crystal and fatty acid structures, it was suggested that PA, which prefers a linear form in nature, required a greater conformational change in its aliphatic chain to bind to the fatty acid-binding pocket in a U-shaped conformation, compared with the cis configurations of OA or DHA. This, together with the length of the aliphatic chain, was considered to be one of the factors determining the binding affinity of PA to FABP7. These results provide a better understanding of fatty acid recognition by FABP7 and expand the knowledge of the binding of PA to FABPs.


  • Organizational Affiliation

    Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Fatty acid-binding protein, brain139Homo sapiensMutation(s): 0 
Gene Names: FABP7BLBPFABPBMRG
UniProt & NIH Common Fund Data Resources
Find proteins for O15540 (Homo sapiens)
Explore O15540 
Go to UniProtKB:  O15540
PHAROS:  O15540
GTEx:  ENSG00000164434 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO15540
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.198 
  • R-Value Work: 0.173 
  • R-Value Observed: 0.175 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 91.895α = 90
b = 45.356β = 98.79
c = 42.846γ = 90
Software Package:
Software NamePurpose
HKL-2000data reduction
HKL-2000data scaling
MOLREPphasing
PHENIXrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data

  • Released Date: 2021-07-14 
  • Deposition Author(s): Nam, K.H.

Funding OrganizationLocationGrant Number
National Research Foundation (NRF, Korea)Korea, Republic OfNRF-2017R1D1A1B03033087
National Research Foundation (NRF, Korea)Korea, Republic OfNRF-2017M3A9F6029736

Revision History  (Full details and data files)

  • Version 1.0: 2021-07-14
    Type: Initial release
  • Version 1.1: 2023-11-29
    Changes: Data collection, Database references, Refinement description