6Y4D

Crystal structure of a short-chain dehydrogenase/reductase (SDR) from Zephyranthes treatiae in complex with NADP+


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.207 
  • R-Value Observed: 0.209 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Crossing the Border: From Keto- to Imine Reduction in Short-Chain Dehydrogenases/Reductases.

Roth, S.Stockinger, P.Steff, J.Steimle, S.Sautner, V.Tittmann, K.Pleiss, J.Muller, M.

(2020) Chembiochem 21: 2615-2619

  • DOI: https://doi.org/10.1002/cbic.202000233
  • Primary Citation of Related Structures:  
    6Y4D

  • PubMed Abstract: 

    The family of NAD(P)H-dependent short-chain dehydrogenases/reductases (SDRs) comprises numerous biocatalysts capable of C=O or C=C reduction. The highly homologous noroxomaritidine reductase (NR) from Narcissus sp. aff. pseudonarcissus and Zt_SDR from Zephyranthes treatiae, however, are SDRs with an extended imine substrate scope. Comparison with a similar SDR from Asparagus officinalis (Ao_SDR) exhibiting keto-reducing activity, yet negligible imine-reducing capability, and mining the Short-Chain Dehydrogenase/Reductase Engineering Database indicated that NR and Zt_SDR possess a unique active-site composition among SDRs. Adapting the active site of Ao_SDR accordingly improved its imine-reducing capability. By applying the same strategy, an unrelated SDR from Methylobacterium sp. 77 (M77_SDR) with distinct keto-reducing activity was engineered into a promiscuous enzyme with imine-reducing activity, thereby confirming that the ability to reduce imines can be rationally introduced into members of the "classical" SDR enzyme family. Thus, members of the SDR family could be a promising starting point for protein approaches to generate new imine-reducing enzymes.


  • Organizational Affiliation

    Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
short-chain dehydrogenase/reductase (SDR)
A, B
291Zephyranthes treatiaeMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.207 
  • R-Value Observed: 0.209 
  • Space Group: P 42 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 95.9α = 90
b = 95.9β = 90
c = 136.33γ = 90
Software Package:
Software NamePurpose
XSCALEdata scaling
PHENIXrefinement
PDB_EXTRACTdata extraction
XDSdata reduction
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2020-04-29
    Type: Initial release
  • Version 1.1: 2020-09-23
    Changes: Database references
  • Version 1.2: 2024-01-24
    Changes: Data collection, Database references, Refinement description