6QJB

Truncated Evasin-3 (tEv3 17-56)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2.

Denisov, S.S.Ippel, J.H.Heinzmann, A.C.A.Koenen, R.R.Ortega-Gomez, A.Soehnlein, O.Hackeng, T.M.Dijkgraaf, I.

(2019) J.Biol.Chem. 294: 12370-12379

  • DOI: 10.1074/jbc.RA119.008902

  • PubMed Abstract: 
  • Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host ...

    Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host immune responses. Evasin-3 is a small salivary protein which belongs to a class of chemokine-binding proteins isolated from the brown dog tick, Rhipicephalus sanguineus. Evasin-3 has been shown to have a high affinity for chemokines CXCL1 and CXCL8 and diminish inflammation in mice. In the present study, solution NMR spectroscopy was used to investigate the structure of Evasin-3 and its CXCL8/Evasin-3 complex. Evasin-3 is found to disrupt the glycosaminoglycan (GAG) binding site of CXCL8 and inhibit the interaction of CXCL8 with CXCR2. Structural data were used to design two novel CXCL8 binding peptides. Linear tEv3 17-56 and cyclic tcEv3 16-56 dPG Evasin-3 variants were chemically synthesized by solid phase peptide synthesis. Affinity of these newly synthesized variants to CXCL8 were measured by surface plasmon resonance (SPR) biosensor analysis. Kd values of tEv3 17-56 and tcEv3 16-56 dPG were 27 and 13 nM, respectively. Both compounds effectively inhibited CXCL8 induced migration of polymorphonuclear neutrophils (PMN). The present results suggest utility of synthetic Evasin-3 variants as scaffolds for designing and fine-tuning new chemokine-binding agents that suppress immune responses and inflammation.


    Organizational Affiliation

    Biochemistry, Maastricht University, Netherlands.,Ludwig Maximilian University, Germany.,Department of Biochemistry, Maastricht University, Netherlands.,Maastricht University, Netherlands.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Evasin-3
A
40Rhipicephalus sanguineusMutation(s): 0 
Find proteins for P0C8E8 (Rhipicephalus sanguineus)
Go to UniProtKB:  P0C8E8
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Netherlands Organisation for Scientific ResearchNetherlands723.013.009

Revision History 

  • Version 1.0: 2019-07-03
    Type: Initial release
  • Version 1.1: 2019-07-10
    Type: Data collection, Database references
  • Version 1.2: 2019-07-17
    Type: Data collection
  • Version 1.3: 2019-08-28
    Type: Data collection, Database references