Crystal Structure of Human APRT wild type in complex with GMP

Experimental Data Snapshot

  • Resolution: 1.55 Å
  • R-Value Free: 0.177 
  • R-Value Work: 0.158 
  • R-Value Observed: 0.158 

wwPDB Validation   3D Report Full Report

Ligand Structure Quality Assessment 

This is version 1.3 of the entry. See complete history


Structural basis for substrate selectivity and nucleophilic substitution mechanisms in human adenine phosphoribosyltransferase catalyzed reaction.

Ozeir, M.Huyet, J.Burgevin, M.C.Pinson, B.Chesney, F.Remy, J.M.Siddiqi, A.R.Lupoli, R.Pinon, G.Saint-Marc, C.Gibert, J.F.Morales, R.Ceballos-Picot, I.Barouki, R.Daignan-Fornier, B.Olivier-Bandini, A.Auge, F.Nioche, P.

(2019) J Biol Chem 294: 11980-11991

  • DOI: https://doi.org/10.1074/jbc.RA119.009087
  • Primary Citation of Related Structures:  
    6HGP, 6HGQ, 6HGR, 6HGS

  • PubMed Abstract: 

    The reversible adenine phosphoribosyltransferase enzyme (APRT) is essential for purine homeostasis in prokaryotes and eukaryotes. In humans, APRT (hAPRT) is the only enzyme known to produce AMP in cells from dietary adenine. APRT can also process adenine analogs, which are involved in plant development or neuronal homeostasis. However, the molecular mechanism underlying substrate specificity of APRT and catalysis in both directions of the reaction remains poorly understood. Here we present the crystal structures of hAPRT complexed to three cellular nucleotide analogs (hypoxanthine, IMP, and GMP) that we compare with the phosphate-bound enzyme. We established that binding to hAPRT is substrate shape-specific in the forward reaction, whereas it is base-specific in the reverse reaction. Furthermore, a quantum mechanics/molecular mechanics (QM/MM) analysis suggests that the forward reaction is mainly a nucleophilic substitution of type 2 (S N 2) with a mix of S N 1-type molecular mechanism. Based on our structural analysis, a magnesium-assisted S N 2-type mechanism would be involved in the reverse reaction. These results provide a framework for understanding the molecular mechanism and substrate discrimination in both directions by APRTs. This knowledge can play an instrumental role in the design of inhibitors, such as antiparasitic agents, or adenine-based substrates.

  • Organizational Affiliation

    Sanofi R&D, Translational Science Unit, Chilly-Mazarin, 91385, France.

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Adenine phosphoribosyltransferase
A, B
178Homo sapiensMutation(s): 0 
Gene Names: APRT
UniProt & NIH Common Fund Data Resources
Find proteins for P07741 (Homo sapiens)
Explore P07741 
Go to UniProtKB:  P07741
GTEx:  ENSG00000198931 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP07741
Sequence Annotations
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
5GP Binding MOAD:  6HGS Ki: 1.70e+5 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Resolution: 1.55 Å
  • R-Value Free: 0.177 
  • R-Value Work: 0.158 
  • R-Value Observed: 0.158 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 47.38α = 76.73
b = 47.68β = 69.27
c = 47.79γ = 61.48
Software Package:
Software NamePurpose
SCALAdata scaling
PDB_EXTRACTdata extraction
Cootmodel building
MxCuBEdata collection
iMOSFLMdata reduction

Structure Validation

View Full Validation Report

Ligand Structure Quality Assessment 

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2019-07-31
    Type: Initial release
  • Version 1.1: 2019-08-21
    Changes: Data collection, Database references
  • Version 1.2: 2019-10-09
    Changes: Data collection
  • Version 1.3: 2024-01-17
    Changes: Data collection, Database references, Refinement description