Primary Citation of Related Structures:   6GZK, 6GZR
PubMed Abstract: 
RNA aptamers-artificially created RNAs with high affinity and selectivity for their target ligand generated from random sequence pools-are versatile tools in the fields of biotechnology and medicine. On a more fundamental level, they also further our general understanding of RNA-ligand interactions e ...
RNA aptamers-artificially created RNAs with high affinity and selectivity for their target ligand generated from random sequence pools-are versatile tools in the fields of biotechnology and medicine. On a more fundamental level, they also further our general understanding of RNA-ligand interactions e. g. in regard to the relationship between structural complexity and ligand affinity and specificity, RNA structure and RNA folding. Detailed structural knowledge on a wide range of aptamer-ligand complexes is required to further our understanding of RNA-ligand interactions. Here, we present the atomic resolution structure of an RNA-aptamer binding to the fluorescent xanthene dye tetramethylrhodamine. The high resolution structure, solved by NMR-spectroscopy in solution, reveals binding features both common and different from the binding mode of other aptamers with affinity for ligands carrying planar aromatic ring systems such as the malachite green aptamer which binds to the tetramethylrhodamine related dye malachite green or the flavin mononucleotide aptamer.
Related Citations: 
NMR resonance assignments for the tetramethylrhodamine binding RNA aptamer 3 in complex with the ligand 5-carboxy-tetramethylrhodamine. Duchardt-Ferner, E., Juen, M., Kreutz, C., Wohnert, J. (2017) Biomol NMR Assign 11: 29
Organizational Affiliation: 
Institute for Molecular Biosciences, Goethe University, Frankfurt/M., Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt/M., Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.