Structure of human TFB2M

Experimental Data Snapshot

  • Resolution: 1.75 Å
  • R-Value Free: 0.214 
  • R-Value Work: 0.192 
  • R-Value Observed: 0.193 

wwPDB Validation   3D Report Full Report

This is version 1.2 of the entry. See complete history


Structural Basis of Mitochondrial Transcription Initiation.

Hillen, H.S.Morozov, Y.I.Sarfallah, A.Temiakov, D.Cramer, P.

(2017) Cell 171: 1072-1081.e10

  • DOI: https://doi.org/10.1016/j.cell.2017.10.036
  • Primary Citation of Related Structures:  
    6ERO, 6ERP, 6ERQ

  • PubMed Abstract: 

    Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.

  • Organizational Affiliation

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Dimethyladenosine transferase 2, mitochondrial,Dimethyladenosine transferase 2, mitochondrial
A, B
313Homo sapiensMutation(s): 0 
Gene Names: TFB2MNS5ATP5
EC: 2.1.1
UniProt & NIH Common Fund Data Resources
Find proteins for Q9H5Q4 (Homo sapiens)
Explore Q9H5Q4 
Go to UniProtKB:  Q9H5Q4
GTEx:  ENSG00000162851 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9H5Q4
Sequence Annotations
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Resolution: 1.75 Å
  • R-Value Free: 0.214 
  • R-Value Work: 0.192 
  • R-Value Observed: 0.193 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.95α = 90
b = 165.65β = 97.97
c = 44.73γ = 90
Software Package:
Software NamePurpose
XDSdata reduction
XDSdata scaling
Cootmodel building

Structure Validation

View Full Validation Report

Entry History & Funding Information

Deposition Data

Funding OrganizationLocationGrant Number
German Research FoundationGermanySFB860
German Research FoundationGermanySPP1935
European Research CouncilGermany693023
Volkswagen FoundationGermany--
National Institutes of HealthUnited StatesRO1 GM104231
Boehringer Ingelheim FondsGermanyPhD Student Fellowship

Revision History  (Full details and data files)

  • Version 1.0: 2017-11-15
    Type: Initial release
  • Version 1.1: 2017-11-29
    Changes: Database references
  • Version 1.2: 2018-01-31
    Changes: Author supporting evidence