Structural insights into the sequence-specific recognition of Piwi byDrosophilaPapi
Zhang, Y., Liu, W., Li, R., Gu, J., Wu, P., Peng, C., Ma, J., Wu, L., Yu, Y., Huang, Y.(2018) Proc Natl Acad Sci U S A 115: 3374-3379
- PubMed: 29531043 
- DOI: https://doi.org/10.1073/pnas.1717116115
- Primary Citation of Related Structures:  
5YGB, 5YGC, 5YGD, 5YGF - PubMed Abstract: 
The Tudor domain-containing (Tdrd) family proteins play a critical role in transposon silencing in animal gonads by recognizing the symmetrically dimethylated arginine (sDMA) on the (G/A)R motif of the N-terminal of PIWI family proteins via the eTud domains. Papi, also known as "Tdrd2," is involved in Zucchini-mediated PIWI-interacting RNA (piRNA) 3'-end maturation. Intriguingly, a recent study showed that, in papi mutant flies, only Piwi-bound piRNAs increased in length, and not Ago3-bound or Aub-bound piRNAs. However, the molecular and structural basis of the Papi-Piwi complex is still not fully understood, which limits mechanistic understanding of the function of Papi in piRNA biogenesis. In the present study, we determined the crystal structures of Papi-eTud in the apo form and in complex with a peptide containing unmethylated or dimethylated R10 residues. Structural and biochemical analysis showed that the Papi interaction region on the Drosophila Piwi contains an RGRRR motif (R7-R11) distinct from the consensus (G/A)R motif recognized by canonical eTud. Mass spectrometry results indicated that Piwi is the major binding partner of Papi in vivo. The papi mutant flies suffered from both fertility and transposon-silencing defects, supporting the important role conferred to Papi in piRNA 3' processing through direct interaction with Piwi proteins.
Organizational Affiliation: 
State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.