5KA9

Protein Tyrosine Phosphatase 1B L192A mutant in complex with TCS401, open state


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.07 Å
  • R-Value Free: 0.230 
  • R-Value Work: 0.189 
  • R-Value Observed: 0.191 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.0 of the entry. See complete history


Literature

Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery.

Choy, M.S.Li, Y.Machado, L.E.Kunze, M.B.Connors, C.R.Wei, X.Lindorff-Larsen, K.Page, R.Peti, W.

(2017) Mol Cell 65: 644-658.e5

  • DOI: 10.1016/j.molcel.2017.01.014
  • Primary Citation of Related Structures:  
    5K9V, 5K9W, 5KAD, 5KAC, 5KAB, 5KAA, 5KA4, 5KA3, 5KA8, 5KA7, 5KA9, 5KA0, 5KA2, 5KA1

  • PubMed Abstract: 
  • Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways ...

    Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function.


    Organizational Affiliation

    Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA; Department of Chemistry, Brown University, Providence, RI 02912, USA. Electronic address: wolfgangpeti@email.arizona.edu.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Tyrosine-protein phosphatase non-receptor type 1A306Homo sapiensMutation(s): 1 
Gene Names: PTPN1PTP1B
EC: 3.1.3.48
UniProt & NIH Common Fund Data Resources
Find proteins for P18031 (Homo sapiens)
Explore P18031 
Go to UniProtKB:  P18031
PHAROS:  P18031
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
OTA (Subject of Investigation/LOI)
Query on OTA

Download Ideal Coordinates CCD File 
H [auth A]2-(OXALYL-AMINO)-4,5,6,7-TETRAHYDRO-THIENO[2,3-C]PYRIDINE-3-CARBOXYLIC ACID
C10 H10 N2 O5 S
ZIBMATWHOAGNTR-UHFFFAOYSA-N
 Ligand Interaction
TRS
Query on TRS

Download Ideal Coordinates CCD File 
G [auth A]2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL
C4 H12 N O3
LENZDBCJOHFCAS-UHFFFAOYSA-O
 Ligand Interaction
GOL
Query on GOL

Download Ideal Coordinates CCD File 
B [auth A]GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download Ideal Coordinates CCD File 
C [auth A], D [auth A], E [auth A], F [auth A]CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
Binding Affinity Annotations 
IDSourceBinding Affinity
OTA BindingDB:  5KA9 Ki: min: 230, max: 5.01e+4 (nM) from 6 assay(s)
IC50: 5.00e+5 (nM) from 1 assay(s)
Binding MOAD:  5KA9 Kd: 3.90e+4 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.07 Å
  • R-Value Free: 0.230 
  • R-Value Work: 0.189 
  • R-Value Observed: 0.191 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 88.709α = 90
b = 88.709β = 90
c = 106.218γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement
HKL-2000data scaling
PHASERphasing
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment  



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2017-03-01
    Type: Initial release