5F2R

Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with AMP-PCP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.199 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Probing the ATP Site of GRP78 with Nucleotide Triphosphate Analogs.

Hughes, S.J.Antoshchenko, T.Chen, Y.Lu, H.Pizarro, J.C.Park, H.W.

(2016) Plos One 11: e0154862-e0154862

  • DOI: 10.1371/journal.pone.0154862
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding dom ...

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligands (ATP analogs) to a receptor (GRP78ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the β-γ bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg++-dependent, as the removal of Mg++ nearly abolished binding to GRP78ATPase. The AMPPCP-Mg++ structure showed evidence for the critical role of Mg++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg++. The 2'-deoxyATP structure showed the conformation of the bound nucleotide flipped out of the active site, explaining the low affinity binding to GRP78 and suggesting that the 2'-OH group is essential for the high affinity binding to GRP78. Together, our results demonstrate that GRP78ATPase possesses nucleotide specificity more relaxed than previously anticipated and can tolerate certain modifications to the nucleobase 7-position and, to a lesser extent, the β-γ bridging atom, thereby providing a possible atomic mechanism underlying the transmembrane transport of the ATP analogs.


    Organizational Affiliation

    Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA 70112, United States of America.,Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, United States of America.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
78 kDa glucose-regulated protein
A, B
400Homo sapiensMutation(s): 0 
Gene Names: HSPA5 (GRP78)
EC: 3.6.4.10
Find proteins for P11021 (Homo sapiens)
Go to Gene View: HSPA5
Go to UniProtKB:  P11021
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
MG
Query on MG

Download SDF File 
Download CCD File 
A, B
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
ACP
Query on ACP

Download SDF File 
Download CCD File 
A, B
PHOSPHOMETHYLPHOSPHONIC ACID ADENYLATE ESTER
ADENOSINE-5'-[BETA, GAMMA-METHYLENE]TRIPHOSPHATE
C11 H18 N5 O12 P3
UFZTZBNSLXELAL-IOSLPCCCSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
ACPKd: 52000 nM BINDINGMOAD
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.199 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 54.958α = 90.00
b = 74.549β = 98.15
c = 88.414γ = 90.00
Software Package:
Software NamePurpose
SCALEPACKdata scaling
REFMACrefinement
MOLREPphasing
PDB_EXTRACTdata extraction
DENZOdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2016-06-15
    Type: Initial release