Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation.
Lewis, H.D., Liddle, J., Coote, J.E., Atkinson, S.J., Barker, M.D., Bax, B.D., Bicker, K.L., Bingham, R.P., Campbell, M., Chen, Y.H., Chung, C.W., Craggs, P.D., Davis, R.P., Eberhard, D., Joberty, G., Lind, K.E., Locke, K., Maller, C., Martinod, K., Patten, C., Polyakova, O., Rise, C.E., Rudiger, M., Sheppard, R.J., Slade, D.J., Thomas, P., Thorpe, J., Yao, G., Drewes, G., Wagner, D.D., Thompson, P.R., Prinjha, R.K., Wilson, D.M.(2015) Nat Chem Biol 11: 189-191
- PubMed: 25622091 
- DOI: https://doi.org/10.1038/nchembio.1735
- Primary Citation of Related Structures:  
4X8C, 4X8G - PubMed Abstract: 
PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored.
Organizational Affiliation: 
EpiNova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline,Medicines Research Centre, Stevenage, Hertfordshire, UK.