4USW

Crystal structure of human soluble Adenylyl Cyclase with ATP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.05 Å
  • R-Value Free: 0.212 
  • R-Value Work: 0.164 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural Analysis of Human Soluble Adenylyl Cyclase and Crystal Structures of its Nucleotide Complexes -Implications for Cyclase Catalysis and Evolution.

Kleinbolting, S.Van Den Heuvel, J.Steegborn, C.

(2014) FEBS J. 281: 4151

  • DOI: 10.1111/febs.12913
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The ubiquitous second messenger cAMP regulates a wide array of functions, from bacterial transcription to mammalian memory. It is synthesized by six evolutionarily distinct adenylyl cyclase (AC) families. In mammals, there are two AC types: nine tran ...

    The ubiquitous second messenger cAMP regulates a wide array of functions, from bacterial transcription to mammalian memory. It is synthesized by six evolutionarily distinct adenylyl cyclase (AC) families. In mammals, there are two AC types: nine transmembrane ACs (tmACs) and one soluble AC (sAC). Both AC types belong to the widespread cyclase class III, which has members in numerous organisms from archaeons to mammals. Class III also contains all known guanylyl cyclases (GCs), which synthesize the cAMP-related messenger cGMP in many eukaryotes and possibly some prokaryotes. Among mammalian ACs, sAC is uniquely regulated by bicarbonate, and has been proposed to be more closely related to a bacterial AC subfamily than to mammalian ACs, on the basis of sequence comparisons. Here, we used crystal structures of human sAC catalytic domains to analyze its relationships with other class III ACs and GCs, and to study its substrate selection mechanisms. Structural comparisons revealed a similarity within an sAC-like subfamily but no family-specific structure elements, and an unexpected sAC similarity to eukaryotic GCs and a potential bacterial GC. We further solved novel crystal structures of sAC catalytic domains in complex with a substrate analog, unprocessed ATP substrate, and product after soaking with ATP or GTP. The structures show a novel ATP-binding conformation, and suggest mechanisms for substrate association and recognition. Our results could explain the limited substrate specificity of sAC, suggest how specificity is increased in other cyclases, and indicate evolutionary relationships among class III enzymes, with sAC being close to a putative 'ancestor' cyclase.


    Organizational Affiliation

    Department of Biochemistry, University of Bayreuth, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
ADENYLATE CYCLASE TYPE 10
A
475Homo sapiensMutation(s): 0 
Gene Names: ADCY10 (SAC)
EC: 4.6.1.1
Find proteins for Q96PN6 (Homo sapiens)
Go to Gene View: ADCY10
Go to UniProtKB:  Q96PN6
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ATP
Query on ATP

Download SDF File 
Download CCD File 
A
ADENOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O13 P3
ZKHQWZAMYRWXGA-KQYNXXCUSA-N
 Ligand Interaction
NA
Query on NA

Download SDF File 
Download CCD File 
A
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
ACT
Query on ACT

Download SDF File 
Download CCD File 
A
ACETATE ION
C2 H3 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-M
 Ligand Interaction
GOL
Query on GOL

Download SDF File 
Download CCD File 
A
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
CME
Query on CME
A
L-PEPTIDE LINKINGC5 H11 N O3 S2CYS
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
ATPKd: 2030000 nM BINDINGMOAD
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.05 Å
  • R-Value Free: 0.212 
  • R-Value Work: 0.164 
  • Space Group: P 63
Unit Cell:
Length (Å)Angle (°)
a = 101.090α = 90.00
b = 101.090β = 90.00
c = 96.750γ = 120.00
Software Package:
Software NamePurpose
MOLREPphasing
XDSdata reduction
XSCALEdata scaling
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2014-07-30
    Type: Initial release
  • Version 1.1: 2014-10-01
    Type: Database references
  • Version 1.2: 2019-04-03
    Type: Data collection, Derived calculations, Other, Source and taxonomy