4PVX

Crystal structure of human FPPS in complex with [({4-[4-(cyclopropyloxy)phenyl]pyridin-2-yl}amino)methanediyl]bis(phosphonic acid)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.18 Å
  • R-Value Free: 0.220 
  • R-Value Work: 0.170 
  • R-Value Observed: 0.172 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.1 of the entry. See complete history


Literature

Crystallographic and thermodynamic characterization of phenylaminopyridine bisphosphonates binding to human farnesyl pyrophosphate synthase.

Park, J.Rodionov, D.De Schutter, J.W.Lin, Y.S.Tsantrizos, Y.S.Berghuis, A.M.

(2017) PLoS One 12: e0186447-e0186447

  • DOI: 10.1371/journal.pone.0186447
  • Primary Citation of Related Structures:  
    4NFI, 4NFJ, 4NFK, 4PVX, 4PVY

  • PubMed Abstract: 
  • Human farnesyl pyrophosphate synthase (hFPPS) catalyzes the production of the 15-carbon isoprenoid farnesyl pyrophosphate. The enzyme is a key regulator of the mevalonate pathway and a well-established drug target. Notably, it was elucidated as the molecular target of nitrogen-containing bisphosphonates, a class of drugs that have been widely successful against bone resorption disorders ...

    Human farnesyl pyrophosphate synthase (hFPPS) catalyzes the production of the 15-carbon isoprenoid farnesyl pyrophosphate. The enzyme is a key regulator of the mevalonate pathway and a well-established drug target. Notably, it was elucidated as the molecular target of nitrogen-containing bisphosphonates, a class of drugs that have been widely successful against bone resorption disorders. More recently, research has focused on the anticancer effects of these inhibitors. In order to achieve increased non-skeletal tissue exposure, we created phenylaminopyridine bisphosphonates (PNP-BPs) that have bulky hydrophobic side chains through a structure-based approach. Some of these compounds have proven to be more potent than the current clinical drugs in a number of antiproliferation assays using multiple myeloma cell lines. In the present work, we characterized the binding of our most potent PNP-BPs to the target enzyme, hFPPS. Co-crystal structures demonstrate that the molecular interactions designed to elicit tighter binding are indeed established. We carried out thermodynamic studies as well; the newly introduced protein-ligand interactions are clearly reflected in the enthalpy of binding measured, which is more favorable for the new PNP-BPs than for the lead compound. These studies also indicate that the affinity of the PNP-BPs to hFPPS is comparable to that of the current drug risedronate. Risedronate forms additional polar interactions via its hydroxyl functional group and thus exhibits more favorable binding enthalpy; however, the entropy of binding is more favorable for the PNP-BPs, owing to the greater desolvation effects resulting from their large hydrophobic side chains. These results therefore confirm the overall validity of our drug design strategy. With a distinctly different molecular scaffold, the PNP-BPs described in this report represent an interesting new group of future drug candidates. Further investigation should follow to characterize the tissue distribution profile and assess the potential clinical benefits of these compounds.


    Organizational Affiliation

    Department of Biochemistry, McGill University, Montreal, Quebec, Canada.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Farnesyl pyrophosphate synthaseA [auth F]375Homo sapiensMutation(s): 0 
Gene Names: FDPSFPSKIAA1293
EC: 2.5.1.10 (PDB Primary Data), 2.5.1.1 (PDB Primary Data)
UniProt & NIH Common Fund Data Resources
Find proteins for P14324 (Homo sapiens)
Explore P14324 
Go to UniProtKB:  P14324
PHAROS:  P14324
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP14324
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
YS1
Query on YS1

Download Ideal Coordinates CCD File 
E [auth F][({4-[4-(cyclopropyloxy)phenyl]pyridin-2-yl}amino)methanediyl]bis(phosphonic acid)
C15 H18 N2 O7 P2
MYPRZOLXSMRMEV-UHFFFAOYSA-N
 Ligand Interaction
GOL
Query on GOL

Download Ideal Coordinates CCD File 
F GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
MG
Query on MG

Download Ideal Coordinates CCD File 
B [auth F],
C [auth F],
D [auth F]
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Binding Affinity Annotations 
IDSourceBinding Affinity
YS1 BindingDB:  4PVX IC50: 12 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.18 Å
  • R-Value Free: 0.220 
  • R-Value Work: 0.170 
  • R-Value Observed: 0.172 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 111.26α = 90
b = 111.26β = 90
c = 69.34γ = 90
Software Package:
Software NamePurpose
StructureStudiodata collection
REFMACrefinement
XDSdata reduction
XSCALEdata scaling
REFMACphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2015-04-15
    Type: Initial release
  • Version 1.1: 2017-10-25
    Changes: Database references