4NQT

anti-parallel Fc-hole(T366S/L368A/Y407V) homodimer


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.253 
  • R-Value Work: 0.194 
  • R-Value Observed: 0.198 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Antiparallel Conformation of Knob and Hole Aglycosylated Half-Antibody Homodimers Is Mediated by a CH2-CH3 Hydrophobic Interaction.

Elliott, J.M.Ultsch, M.Lee, J.Tong, R.Takeda, K.Spiess, C.Eigenbrot, C.Scheer, J.M.

(2014) J Mol Biol 426: 1947-1957

  • DOI: https://doi.org/10.1016/j.jmb.2014.02.015
  • Primary Citation of Related Structures:  
    4NQS, 4NQT, 4NQU

  • PubMed Abstract: 

    Bispecific antibody and antibody-like molecules are of wide interest as potential therapeutics that can recognize two distinct targets. Among the variety of ways such molecules have been engineered is by creating "knob" and "hole" heterodimerization sites in the CH3 domains of two antibody heavy chains. The molecules produced in this manner maintain their biological activities while differing very little from the native human IgG sequence. To better understand the knob-into-hole interface, the molecular mechanism of heterodimerization, and to engineer Fc domains that could improve the assembly and purity of heterodimeric reaction products, we sought crystal structures of aglycosylated heterodimeric and homodimeric "knob" and "hole" Fc fragments derived from bacterial expression. The structure of the knob-into-hole Fc was determined at 2.64 Å. Except for the sites of mutation, the structure is very similar to that of the native human IgG1 Fc, consistent with a heterodimer interaction kinetic K(D) of <1 nM. Homodimers of the "knob" and "hole" mutants were also obtained, and their X-ray structures were determined at resolutions 2.5 Å and 2.1 Å, respectively. Both kinds of homodimers adopt a head-to-tail quaternary structure and thus do not contain direct knob/knob or hole/hole CH3 interactions. The head-to-tail arrangement was disfavored by adding site-directed mutations at F241 and F243 in the CH2 domains, leading to increases in both rate and efficiency of bispecific (heterodimer) assembly.


  • Organizational Affiliation

    Department of Protein Chemistry, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA 94080, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Ig gamma-1 chain C region213Homo sapiensMutation(s): 3 
Gene Names: IGHG1
UniProt & NIH Common Fund Data Resources
Find proteins for P01857 (Homo sapiens)
Explore P01857 
Go to UniProtKB:  P01857
PHAROS:  P01857
GTEx:  ENSG00000211896 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01857
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.253 
  • R-Value Work: 0.194 
  • R-Value Observed: 0.198 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 75.468α = 90
b = 44.478β = 106.86
c = 68.895γ = 90
Software Package:
Software NamePurpose
MAR345dtbdata collection
PHASERphasing
REFMACrefinement
HKL-2000data reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-03-12
    Type: Initial release
  • Version 1.1: 2014-04-23
    Changes: Database references
  • Version 1.2: 2023-09-20
    Changes: Data collection, Database references, Refinement description