Primary Citation of Related Structures:   4J3D
PubMed Abstract: 
Lipopolysaccharide (LPS) biosynthesis is an attractive antibacterial target as it is both conserved and essential for the survival of key pathogenic bacteria. Lipid A is the hydrophobic anchor for LPS and a key structural component of the outer membrane of Gram-negative bacteria ...
Lipopolysaccharide (LPS) biosynthesis is an attractive antibacterial target as it is both conserved and essential for the survival of key pathogenic bacteria. Lipid A is the hydrophobic anchor for LPS and a key structural component of the outer membrane of Gram-negative bacteria. Lipid A biosynthesis is performed in part by a unique zinc dependent metalloamidase, LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase), which catalyzes the first non-reversible step in lipid A biosynthesis. The UDP portion of the LpxC substrate-binding pocket has been relatively unexplored. We have designed and evaluated a series of hydroxamate based inhibitors which explore the SAR of substitutions directed into the UDP pocket with a range of substituted α-amino acid based linkers. We also provide the first wild type structure of Pseudomonas aeruginosa LpxC which was utilized in the design of many of these analogs.
Organizational Affiliation: 
Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA. michael.hale@astrazeneca.com