Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth.
Hitosugi, T., Zhou, L., Elf, S., Fan, J., Kang, H.B., Seo, J.H., Shan, C., Dai, Q., Zhang, L., Xie, J., Gu, T.L., Jin, P., Aleckovic, M., Leroy, G., Kang, Y., Sudderth, J.A., Deberardinis, R.J., Luan, C.H., Chen, G.Z., Muller, S., Shin, D.M., Owonikoko, T.K., Lonial, S., Arellano, M.L., Khoury, H.J., Khuri, F.R., Lee, B.H., Ye, K., Boggon, T.J., Kang, S., He, C., Chen, J.(2012) Cancer Cell 22: 585-600
- PubMed: 23153533 
- DOI: https://doi.org/10.1016/j.ccr.2012.09.020
- Primary Citation of Related Structures:  
4GWG, 4GWK - PubMed Abstract: 
It is unclear how cancer cells coordinate glycolysis and biosynthesis to support rapidly growing tumors. We found that the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1), commonly upregulated in human cancers due to loss of TP53, contributes to biosynthesis regulation in part by controlling intracellular levels of its substrate, 3-phosphoglycerate (3-PG), and product, 2-phosphoglycerate (2-PG). 3-PG binds to and inhibits 6-phosphogluconate dehydrogenase in the oxidative pentose phosphate pathway (PPP), while 2-PG activates 3-phosphoglycerate dehydrogenase to provide feedback control of 3-PG levels. Inhibition of PGAM1 by shRNA or a small molecule inhibitor PGMI-004A results in increased 3-PG and decreased 2-PG levels in cancer cells, leading to significantly decreased glycolysis, PPP flux and biosynthesis, as well as attenuated cell proliferation and tumor growth.
Organizational Affiliation: 
Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.