4FLQ

Crystal structure of Amylosucrase double mutant A289P-F290I from Neisseria polysaccharea.


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.173 
  • R-Value Observed: 0.178 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Applying pairwise combinations of amino Acid mutations for sorting out highly efficient glucosylation tools for chemo-enzymatic synthesis of bacterial oligosaccharides.

Champion, E.Guerin, F.Moulis, C.Barbe, S.Tran, T.H.Morel, S.Descroix, K.Monsan, P.Mourey, L.Mulard, L.A.Tranier, S.Remaud-Simeon, M.Andre, I.

(2012) J Am Chem Soc 134: 18677-18688

  • DOI: 10.1021/ja306845b
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Iterative saturation mutagenesis and combinatorial active site saturation focused on vicinal amino acids were used to alter the acceptor specificity of amylosucrase from Neisseria polysaccharea , a sucrose-utilizing α-transglucosidase, and sort out improved variants ...

    Iterative saturation mutagenesis and combinatorial active site saturation focused on vicinal amino acids were used to alter the acceptor specificity of amylosucrase from Neisseria polysaccharea , a sucrose-utilizing α-transglucosidase, and sort out improved variants. From the screening of three semirational sublibraries accounting in total for 20,000 variants, we report here the isolation of three double mutants of N. polysaccharea amylosucrase displaying a spectacular specificity enhancement toward both sucrose, the donor substrate, and the allyl 2-acetamido-2-deoxy-α-D-glucopyranoside acceptor as compared to the wild-type enzyme. Such levels of activity improvement have never been reported before for this class of carbohydrate-active enzymes. X-ray structure of the best performing enzymes supported by molecular dynamics simulations showed local rigidity of the -1 subsite as well as flexibility of loops involved in active site topology, which both account for the enhanced catalytic performances of the mutants. The study well illustrates the importance of taking into account the local conformation of catalytic residues as well as protein dynamics during the catalytic process, when designing enzyme libraries.


    Organizational Affiliation

    Université de Toulouse, INSA,UPS,INP, LISBP, Toulouse, France.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
AmylosucraseA628Neisseria polysacchareaMutation(s): 2 
Gene Names: ams
EC: 2.4.1.4
Find proteins for Q9ZEU2 (Neisseria polysaccharea)
Explore Q9ZEU2 
Go to UniProtKB:  Q9ZEU2
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PG4
Query on PG4

Download CCD File 
A
TETRAETHYLENE GLYCOL
C8 H18 O5
UWHCKJMYHZGTIT-UHFFFAOYSA-N
 Ligand Interaction
PGE
Query on PGE

Download CCD File 
A
TRIETHYLENE GLYCOL
C6 H14 O4
ZIBGPFATKBEMQZ-UHFFFAOYSA-N
 Ligand Interaction
TRS
Query on TRS

Download CCD File 
A
2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL
C4 H12 N O3
LENZDBCJOHFCAS-UHFFFAOYSA-O
 Ligand Interaction
GOL
Query on GOL

Download CCD File 
A
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.173 
  • R-Value Observed: 0.178 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 96.48α = 90
b = 115.81β = 90
c = 60.82γ = 90
Software Package:
Software NamePurpose
DNAdata collection
PHASERphasing
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2012-10-31
    Type: Initial release
  • Version 1.1: 2013-01-02
    Changes: Database references