4C1S

Glycoside hydrolase family 76 (mannosidase) Bt3792 from Bacteroides thetaiotaomicron VPI-5482


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.253 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.216 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Human Gut Bacteroidetes Can Utilize Yeast Mannan Through a Selfish Mechanism.

Cuskin, F.Lowe, E.C.Temple, M.J.Zhu, Y.Cameron, E.A.Pudlo, N.A.Porter, N.T.Urs, K.Thompson, A.J.Cartmell, A.Rogowski, A.Hamilton, B.S.Chen, R.Tolbert, T.J.Piens, K.Bracke, D.Vervecken, W.Hakki, Z.Speciale, G.Munoz-Munoz, J.L.Day, A.Pena, M.J.Mclean, R.Suits, M.D.Boraston, A.B.Atherly, T.Ziemer, C.J.Williams, S.J.Davies, G.J.Abbott, D.W.Martens, E.C.Gilbert, H.J.

(2015) Nature 517: 165

  • DOI: 10.1038/nature13995
  • Primary Citation of Related Structures:  
    4C1R, 4C1S, 4UTF

  • PubMed Abstract: 
  • Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota ...

    Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.


    Organizational Affiliation

    Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
GLYCOSIDE HYDROLASE FAMILY 76 MANNOSIDASEA, B375Bacteroides thetaiotaomicron VPI-5482Mutation(s): 0 
Gene Names: BT3792BT_3792
EC: 3.2.1.101
UniProt
Find proteins for Q8A174 (Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / JCM 5827 / CCUG 10774 / NCTC 10582 / VPI-5482 / E50))
Explore Q8A174 
Go to UniProtKB:  Q8A174
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8A174
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.253 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.216 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 100.1α = 90
b = 44.42β = 101.43
c = 103.05γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
AUTOPROCESSdata reduction
SCALAdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2013-11-13
    Type: Initial release
  • Version 1.1: 2014-11-26
    Changes: Database references
  • Version 1.2: 2014-12-24
    Changes: Database references
  • Version 1.3: 2015-03-04
    Changes: Database references