4C1G

Crystal structure of the metallo-beta-lactamase IMP-1 with D-captopril


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.71 Å
  • R-Value Free: 0.176 
  • R-Value Work: 0.145 
  • R-Value Observed: 0.146 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structural Basis of Metallo-beta-Lactamase Inhibition by Captopril Stereoisomers.

Brem, J.van Berkel, S.S.Zollman, D.Lee, S.Y.Gileadi, O.McHugh, P.J.Walsh, T.R.McDonough, M.A.Schofield, C.J.

(2015) Antimicrob Agents Chemother 60: 142-150

  • DOI: 10.1128/AAC.01335-15
  • Primary Citation of Related Structures:  
    4BZ3, 4C09, 4C1C, 4C1D, 4C1E, 4C1F, 4C1G, 4C1H

  • PubMed Abstract: 
  • β-Lactams are the most successful antibacterials, but their effectiveness is threatened by resistance, most importantly by production of serine- and metallo-β-lactamases (MBLs). MBLs are of increasing concern because they catalyze the hydrolysis of almost all β-lactam antibiotics, including recent-generation carbapenems ...

    β-Lactams are the most successful antibacterials, but their effectiveness is threatened by resistance, most importantly by production of serine- and metallo-β-lactamases (MBLs). MBLs are of increasing concern because they catalyze the hydrolysis of almost all β-lactam antibiotics, including recent-generation carbapenems. Clinically useful serine-β-lactamase inhibitors have been developed, but such inhibitors are not available for MBLs. l-Captopril, which is used to treat hypertension via angiotensin-converting enzyme inhibition, has been reported to inhibit MBLs by chelating the active site zinc ions via its thiol(ate). We report systematic studies on B1 MBL inhibition by all four captopril stereoisomers. High-resolution crystal structures of three MBLs (IMP-1, BcII, and VIM-2) in complex with either the l- or d-captopril stereoisomer reveal correlations between the binding mode and inhibition potency. The results will be useful in the design of MBL inhibitors with the breadth of selectivity required for clinical application against carbapenem-resistant Enterobacteriaceae and other organisms causing MBL-mediated resistant infections.


    Organizational Affiliation

    Department of Chemistry, University of Oxford, Oxford, United Kingdom michael.mcdonough@chem.ox.ac.uk christopher.schofield@chem.ox.ac.uk.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
BETA-LACTAMASE IMP-1A, B228Serratia marcescensMutation(s): 0 
EC: 3.5.2.6
Find proteins for P52699 (Serratia marcescens)
Explore P52699 
Go to UniProtKB:  P52699
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
MCO
Query on MCO

Download Ideal Coordinates CCD File 
E [auth A]1-(3-MERCAPTO-2-METHYL-PROPIONYL)-PYRROLIDINE-2-CARBOXYLIC ACID
C9 H15 N O3 S
FAKRSMQSSFJEIM-RNFRBKRXSA-N
 Ligand Interaction
SO4
Query on SO4

Download Ideal Coordinates CCD File 
F [auth A], G [auth A]SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
ZN
Query on ZN

Download Ideal Coordinates CCD File 
C [auth A], D [auth A], H [auth B], I [auth B]ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.71 Å
  • R-Value Free: 0.176 
  • R-Value Work: 0.145 
  • R-Value Observed: 0.146 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 50.22α = 90
b = 54.57β = 90
c = 194.59γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XSCALEdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-08-27
    Type: Initial release
  • Version 1.1: 2014-09-17
    Changes: Other, Structure summary
  • Version 1.2: 2015-11-25
    Changes: Database references
  • Version 1.3: 2016-01-13
    Changes: Database references
  • Version 1.4: 2018-02-21
    Changes: Database references, Structure summary